精英家教网 > 初中数学 > 题目详情
已知,如图,直线l1y=-
3
2
x+3
与y轴交于点A,与直线l2交于x轴上同一点B,直线l2交y轴于点C,且点C与点A关于x轴对称.
(1)求直线l2的解析式;
(2)若点P是直线l1上任意一点,求证:点P关于x轴的对称点P′一定在直线l2上;
(3)设D(0,-1),平行于y轴的直线x=t分别交直线l1和l2于点E、F.是否存在t的值,使得以A、D、E、F为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.
(1)∵直线l1y=-
3
2
x+3
与x、y轴交于点B、A两点,
∴令x=0,则y=3
令y=0,则x=2
∴A(0,3),B(2,0),
∵点C与点A关于x轴对称,∴C(0,-3);
设直线l2的解析式为y=kx+b,
2k+b=0
b=-3

解得k=
3
2
,b=-3,
∴直线l2的解析式为y=
3
2
x-3;

(2)证明:设P(x,y),点P关于x轴的对称点P′(x,-y),
把点P′(x,-y)代入直线l2的解析式,左边=-y,右边=
3
2
x-3;
又∵y=-
3
2
x+3

∴-y=
3
2
x-3,
∴左边=右边,
∴点P关于x轴的对称点P′一定在直线l2上.

(3)假设存在t的值,使四边形ADEF为平行四边形,
则E(t,
3
2
t-3)、F(t,-
3
2
t+3),
∴(
3
2
t-3)-(-
3
2
t+3)=3-(-1),
解得t=
10
3

∵B(2,0),
∴BN=
10
3
-2=
4
3
=BK,
OK=2-
4
3
=
2
3

即此时EF=-
3
2
×
2
3
+3-(
3
2
×
2
3
+3)=4=AD,
∴存在t的值,使得以A、D、E、F为顶点的四边形是平行四边形,则t的值为
10
3
2
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

甲.乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:
(1)线段CD表示轿车在途中停留了______h;
(2)求线段DE对应的函数解析式;
(3)求轿车从甲地出发后经过多长时间追上货车.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线l1y=
4
3
x
与直线l2:y=kx+b相交于点A,点A的横坐标为3,直线l2交y轴于点B,且|OA|=
1
2
|OB|.
(1)试求直线l2的函数表达式;
(2)若将直线l1沿着x轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线y=
2
3
x+2与两坐标轴围成的三角形的面积是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
3
3
x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α<360°),可得△COD.

(1)求点A,B的坐标;
(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE△ABO;
(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;
(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为响应薄熙来书记建设“森林重庆”的号召,某园艺公司从2010年9月开始积极进行植树造林.该公司第x月种植树木的亩数y(亩)与x之间满足y=x+4,(其中x从9月算起,即9月时x=1,10月时x=2,…,且1≤x≤6,x为正整数).由于植树规模扩大,每亩的收益P(千元)与种植树木亩数y(亩)之间存在如图(25题图)所示的变化趋势.
(1)根据如图所示的变化趋势,直接写出P与y之间所满足的函数关系表达式;
(2)行动实施六个月来,求该每月收益w(千元)与月份x之间的函数关系式,并求x为何值时总收益最大?此时每亩收益为多少?
(3)进入植树造林的第七个月,政府出台了一项激励措施:在“植树造林”过程中,每月植树面积与第六个月植树面积相同的部分,按第六月每亩收益进行结算;超出第六月植树面积的部分,每亩收益将按第六月时每亩的收益再增加0.6m%进行结算.这样,该公司第七月植树面积比第六月增加了m%.另外,第七月时公司需对前六个月种植的所有树木进行保养,除去成本后政府给予每亩4m%千元的保养补贴.最后,该公司第七个月获得种植树木的收益和政府保养补贴共702千元.请通过计算,估算出m的整数值.(参考数据:422=1764,432=1849,442=1936).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定质量,则需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,根据图象回答下列问题:
(1)求y与x之间的函数关系式.
(2)求旅客最多可免费携带多少千克行李?
(3)某旅客所买的行李票的费用为4~15元,求他所带行李的质量范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB.如果点P在直线y=x+1上,且点P到直线AB的距离大于或等于1,那么称点P是线段AB的“疏远点”.
(1)判断点C(
5
2
7
2
)是否是线段AB的“疏远点”,并说明理由;
(2)若点Q(m,n)是线段AB的“疏远点”,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:
(1)a=8;(2)c=92;(3)b=123.
其中正确的是(  )
A.仅有(1)(2)B.仅有(2)(3)C.仅有(1)(3)D.(1)(2)(3)

查看答案和解析>>

同步练习册答案