精英家教网 > 初中数学 > 题目详情
28、已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.
分析:要证AE平分∠BAD,可转化为△ABE为等腰直角三角形,得AB=BE,又AB=CD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定,和矩形的性质,可确定ASA.即求证.
解答:证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠BAD=90°,AB=CD,(1分)
∴∠BEF+∠BFE=90°.
∵EF⊥ED,
∴∠BEF+∠CED=90°.(2分)
∴∠BFE=∠CED.
∴∠BEF=∠CDE.(3分)
又∵EF=ED,
∴△EBF≌△DCE.
∴BE=CD.(4分)
∴BE=AB.∴∠BAE=∠BEA=45°.(5分)
∴∠EAD=45°.
∴∠BAE=∠EAD.(6分)
∴AE平分∠BAD.(7分)
点评:三角形全等的判定是中考的热点.求证的结果可一步步转化为全等三角形的对应边、对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,在矩形ABCD中,P是边AD上的动点,PE垂直AC于E,PF垂直BD于F,如果AB=3,AD=4,那么(  )
A、PE+PF=
12
5
B、
12
5
<PE+PF<
13
5
C、PE+PF=5
D、3<PE+PF<4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,在矩形ABCD中,M是边BC的中点,AB=3,BC=4,⊙D与直线AM相切于点E,
求⊙D的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.
(1)若AP=
5
,AB=
1
3
BC,求矩形ABCD的面积;
(2)若CD=PM,求证:AC=AP+PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,AB=4,AD=10,F是AD上一点,CF⊥EF于点F交AB于点E,
DC
CF
=
1
2
.求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F,请你判断BE与CF的大小关系,并说明你的理由.

查看答案和解析>>

同步练习册答案