精英家教网 > 初中数学 > 题目详情

(2011•成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

解:(1)∵|OA|:|OB|=1:5,|OB|=|OC|,
设OA=m,则OB=OC=5m,AB=6m,
△ABC=AB×OC=15,得×6m×5m=15,解得m=1(舍去负值),
∴A(﹣1,0),B(5,0),C(0,﹣5),
设抛物线解析式为y=a(x+1)(x﹣5),将C点坐标代入,得a=1,
∴抛物线解析式为y=(x+1)(x﹣5),
即y=x2﹣4x﹣5;
(2)设E点坐标为(m,m2﹣4m﹣5),抛物线对称轴为x=2,
由2(m﹣2)=EH,得2(m﹣2)=﹣(m2﹣4m﹣5)或2(m﹣2)=m2﹣4m﹣5,
解得m=1±或m=3±
∵m>2,∴m=1+或m=3+
边长EF=2(m﹣2)=2﹣2或2+2;

(3)存在.
由(1)可知OB=OC=5,
∴△OBC为等腰直角三角形,直线BC解析式为y=x﹣5,
依题意,直线y=x+9或直线y=x﹣19与BC的距离为7
联立
解得
∴M点的坐标为(﹣2,7),(7,16).

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•成都)如图所示的几何体的俯视图是(  )
   

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川成都卷)数学解析版 题型:解答题

(2011•成都)
如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川成都卷)数学解析版 题型:单选题

(2011•成都)如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=(  )

A.116°B.32°
C.58°D.64°

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川成都卷)数学解析版 题型:解答题

(2011•成都)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)

查看答案和解析>>

同步练习册答案