【题目】体育锻炼对学生的健康成长有着深远的影响.某中学 开展了四项球类活动:A:乒乓球;B:足球;C:排球;D:篮球.王老师对学生最喜欢的一项球类活动进行了抽样调查(每人只限一项),并将调查结果绘制成图 1,图2两幅不完整的统计图.
请根据图中信息解答下列问题:
(1)参加此次调查的学生总数是 人;将图1、图2的统计图补充完整;
(2)已知在被调查的最喜欢排球项目的4名学生中只有1名女生,现从这4名学生中任意抽取2名学生参加校排球队,请用列表法或画树状图的方法,求出恰好抽到一名男生和一名女生的概率.
【答案】(1)40,详见解析;(2).
【解析】
(1)根据A活动的人数及其百分比可得总人数,用总人数减去A、C、D的人数求出B活动的人数,用B项的人数除以总人数即可求出B项所占的百分比,从而补全统计图;
(2)列表得出所有等可能结果,再从中找到恰好抽到一名男生一名女生的结果数,继而根据概率公式计算可得.
解:(1)本次调查的学生总人数为6÷15%=40人,
B项活动的人数为40-(6+4+14)=16,
B项所占的百分比是:%=40%;
补全统计图如下:
故答案为:40;
(2)列表如下:
男 | 男 | 男 | 女 | |
男 | (男,男) | (男,男) | (男,女) | |
男 | (男,男) | (男,男) | (男,女) | |
男 | (男,男) | (男,男) | (男,女) | |
女 | (女,男) | (女,男) | (女,男) |
由表可知总共有12种结果,每种结果出现的可能性相同,其中恰好抽到一名男生和一名女生的结果有6种,
所以抽到一名男生和一名女生的概率是.
科目:初中数学 来源: 题型:
【题目】如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.
(问题发现)
(1)如图(2),当n=1时,BM与PD的数量关系为 ,CN与PD的数量关系为 .
(类比探究)
(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.
(拓展延伸)
(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMVP旋转至C,N,M三点共线时,请直接写出线段CN的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,折叠矩形,具体操作:①点为边上一点(不与、重合),把沿所在的直线折叠,点的对称点为点;②过点对折,折痕所在的直线交于点、点的对称点为点.
(1)求证:∽.
(2)若,.
①点在移动的过程中,求的最大值.
②如图2,若点恰在直线上,连接,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标;
(2)点在该二次函数图象上.
①当时,求的值;
②若点到轴的距离小于2,请根据图象直接写出的取值范围;
③直接写出点与直线的距离小于时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2.
(1)求一次函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.
(1)求证:△AFG∽△DFC;
(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)经过点 经过点A(﹣1,0),B(5,﹣6),C(6,0)
(1)求抛物线的解析式;
(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,为测量河岸两灯塔,之间的距离,小明在河对岸处测得灯塔在北偏东方向上,灯塔在东北方向上,小明沿河岸向东行走100米至处,测得此时灯塔在北偏西方向上,已知河两岸.
(1)求观测点到灯塔的距离;
(2)求灯塔,之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图反映了甲、乙两名自行车爱好者同时骑车从地到地进行训练时行驶路程(千米)和行驶时间(小时)之间关系的部分图像,根据图像提供的信息,解答下列问题:
(1)求乙的行驶路程和行驶时间之间的函数解析式;
(2)如果甲的速度一直保持不变,乙在骑行小时之后又以第小时的速度骑行,结果两人同时到达地,求、两地之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com