分析 根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOB与∠C+∠D之间的关系.
解答 证明:∵AO平分∠DAB,BO平分∠ABC,
∴∠OAB=$\frac{1}{2}$∠DAB,∠OBA=$\frac{1}{2}$∠ABC,
∴∠AOB=180°-(∠OAB+∠OBA)
=180°-$\frac{1}{2}$(∠DAB+∠CBA)
=180°-$\frac{1}{2}$(360°-∠C-∠D)
=$\frac{1}{2}$(∠C+∠D),
∵∠C+∠D=220°,
∴∠AOB=$\frac{1}{2}$(∠C+∠D)=110°.
点评 本题考查了角平分线的定义,多边形内角和定理,关键是熟悉三角形内角和等于180°,四边形内角和等于360°.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
A 组 | -1.5 | +1.5 | -1 | -2 | -2 |
B组 | +1 | +3 | -3 | +2 | -3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com