分析 先根据AD⊥BC,EG⊥BC得出∠4=∠5,故可得出AD∥EG,再由平行线的性质得出∠1=∠E,∠2=∠3,根据∠E=∠3即可得出结论.
解答 解:是.
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠E,(两直线平行,同位角相等)
∠2=∠3.(两直线平行,内错角相等)
∵∠E=∠3,(已知)
∴∠1=∠2,
∴AD是∠BAC的平分线(角平分线的定义).
故答案为:同位角相等,两直线平行,两直线平行,同位角相等,两直线平行,内错角相等,∠1,∠2.
点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 不等边三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 150° | B. | 240° | C. | 200° | D. | 180° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 72° | B. | 54° | C. | 46° | D. | 20° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com