分析 (1)利用待定系数法直接求出抛物线解析式;
(2)先表示出BH,PH,进而得出∠HBP的正切值,再用等角的同名三角函数即可表示出OD,即可得出结论;
(3)先求出直线AC解析式,进而判断出四边形DOMN是矩形,最后用三角函数和对称性求出t,即可得出OD和tan∠GDN=$\frac{1}{3}$,即可得出结论.
解答 证明:(1)∵抛物线$y=\frac{1}{4}{x^2}-bx+c$过A(8,0)、B(2,0)两点,
∴$\left\{\begin{array}{l}0=\frac{1}{4}×{8^2}-8b+c\\ 0=\frac{1}{4}×{2^2}-2b+c\end{array}\right.$,
∴$\left\{\begin{array}{l}b=\frac{5}{2}\\ c=4\end{array}\right.$,
∴抛物线的解析式为:y=$\frac{1}{4}$x2-$\frac{5}{2}$x+4
(2)如图2,
过点P作PH⊥AB于点H,
设点P(t,$\frac{1}{4}{t^2}-\frac{5}{2}t+4$)
∴BH=t-2,PH=$-\frac{1}{4}{t^2}+\frac{5}{2}t-4$
∴tan∠HBP=$\frac{PH}{BH}$=$\frac{-\frac{1}{4}{t}^{2}+\frac{5}{2}t-4}{t-2}$,
∵∠OBD=∠HBP,
∴tan∠OBD=tan∠HBP,
∴$-\frac{1}{4}(t-8)=\frac{OD}{2}$,
∴OD=$-\frac{1}{2}t+4$,
∴CD=4-OD=$\frac{1}{2}t$
∴d=$\frac{1}{2}t$(2<t<8),
(3)如图3,
设直线 AC的解析式为y=kx+b,
∴$\left\{\begin{array}{l}8k+b=0\\ b=4\end{array}\right.$
∴$\left\{\begin{array}{l}k=-\frac{1}{2}\\ b=4\end{array}\right.$,
∴直线AC的解析式为$y=-\frac{1}{2}x+4$,
∴点E(t,$-\frac{1}{2}t+4$)
∴EH=OD=$-\frac{1}{2}t+4$,
∵EH∥OD,
∴四边形DOHE是矩形,
∴DE∥OH,
取AO的中点M,
连接GM,交DE于点N,
∴GM∥OC,
∴GN⊥DE,
∴四边形DOMN是矩形,
∴OD=NM=$-\frac{1}{2}t+4$,NG=2-MN=$\frac{1}{2}t-2$,
∵DN=OM=4
tan∠GDN=$\frac{{\frac{1}{2}t-2}}{4}=\frac{1}{8}t-\frac{1}{2}$,
∵由对称性得∠PDE=∠GDE=∠HBP
tan∠GDN=tan∠HBP,
∴$\frac{1}{8}t-\frac{1}{2}=-\frac{1}{4}(t-8)$,
∴t=$\frac{20}{3}$
∴OD=$\frac{2}{3}$,
∴tan∠GDN=$\frac{1}{3}$,
设点F(m,$\frac{1}{4}{m^2}-\frac{5}{2}m+4)$
过点F作FK⊥DE交延长线于点K,
tan∠GDN=$\frac{FK}{DK}=\frac{{\frac{1}{4}{m^2}-\frac{5}{2}m+4-\frac{2}{3}}}{m}=\frac{1}{3}$,
∴${m_1}=10,{m_2}=\frac{4}{3}(舍)$,
∴F(10,4),
点评 此题是二次函数综合题,主要考查了待定系数法,锐角三角函数,矩形的判定和性质,解本题的关键是灵活运用锐角三角函数,是一道很好的中考压轴题.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com