分析 (1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;
(2)由∠BDA=∠AEC=∠BAC=120°就可以求出∠BAD=∠ACE,进而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE而得出结论;
(3)由等边三角形的性质就可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,进而得出△BDF≌△AEF,得出DF=EF.
解答 证明:(1)∵BD⊥DE,CE⊥DE,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=∠BAD+∠ABD=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
$\left\{\begin{array}{l}{∠BAD=∠CEA}\\{∠ABD=∠CAE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,CE=DA,
∴DE=AE+DA=BD+CE;
(2)DE=BD+CE成立.
理由:∵∠BDA=∠BAC=90°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
$\left\{\begin{array}{l}{∠BDA=∠AEC}\\{∠DBA=∠CAE}\\{BA=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE;
(3)△DEF为等边三角形
理由:∵△ABF和△ACF均为等边三角形
∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,
∴∠BDA=∠AEC=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
$\left\{\begin{array}{l}{∠BDA=∠AEC}\\{∠DBA=∠CAE}\\{BA=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴BD=AE,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE.
在△BDF和△AEF中
$\left\{\begin{array}{l}{FB=FA}\\{∠DBF=∠FAE}\\{BD=AE}\end{array}\right.$,
∴△DBF≌△EAF(SAS)
∴DF=EF.
点评 本题考查了全等三角形的判定及性质的运用.等边三角形的判定及性质的运用,等式的性质的运用,解答时证明三角形的全等是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com