【题目】已知直线y=kx+b(k≠0)与直线y=﹣3x平行,且与两坐标轴围成的三角形的面积为6,那么这条直线的解析式为_____.
【答案】y=﹣3x+6或y=﹣3x﹣6.
【解析】
利用两直线平行问题得到直线解析式为y=﹣3x+b,再求出直线y=﹣3x+b与y轴的交点坐标为(0,b),与x轴的交点坐标为(,0),然后根据三角形面积公式得到×|b|×||=6,再解绝对值方程求出b即可得到直线解析式.
解:∵直线y=kx+b(k≠0)与直线y=﹣3x平行,
∴k=﹣3,
∴直线解析式为y=﹣3x+b,
当x=0时,y=﹣3x+b=b,则直线y=﹣3x+b与y轴的交点坐标为(0,b),
当y=0时,﹣3x+b=0,解得x=,则直线y=﹣3x+b与x轴的交点坐标为(,0),
∵直线与两坐标轴围成的三角形的面积为6,
∴×|b|×||=6,解得b=±6,
∴直线解析式为y=﹣3x+6或y=﹣3x﹣6.
故答案为:y=﹣3x+6或y=﹣3x﹣6.
科目:初中数学 来源: 题型:
【题目】甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( )
A. 甲合算 B. 乙合算
C. 甲、乙一样 D. 要看两次的价格情况
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中,且A、B、C.将其平移后得到,若A,B的对应点是,,C的对应点的坐标是.
(1)在平面直角坐标系中画出△ABC;
(2)写出点的坐标是_____________,坐标是___________;
(3)此次平移也可看作向________平移了____________个单位长度,再向_______平移了______个单位长度得到△ABC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.
(1)求三角形ABC的面积;
(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED的度数;
(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装360辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练和2名新工人每月可安装12辆电动汽车;2名熟练工和3名新工人每月可安装21辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为( )
A.6cm2
B.8cm2
C.10cm2
D.12cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校组织的游艺会上,投飞标游艺区游戏区规则如下,如图投到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况如图所示.
(1)求掷中A区、B区一次各得多少分?
(2)依此方法计算小明的得分为多少分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com