精英家教网 > 初中数学 > 题目详情
抛物线y1=ax2+bx+c交x轴于A、B两点,交y轴于点C,对称轴为直线x=1,且A、C两点的坐标分别为A(-1,0)、C(0,-3).
(1)求抛物线y1=ax2+bx+c和直线BC:y2=mx+n的解析式;
(2)当y1•y2≥0时,直接写出x的取值范围.
(1)∵抛物线y1=ax2+bx+c的对称轴为x=1,且A点的坐标为A(-1,0),
∵A、B两点关于x=1对称,
∴B点坐标为(3,1),
∵抛物线y1=ax2+bx+c经过A(-1,0)、B(3,0),C(0,-3),
a-b+c=0
9a+3b+c=0
c=-3

解得a=1,b=-2,c=-3,
∴抛物线的解析式为y1=x2-2x-3;
直线y2=mx+n经过B(3,0),C(0,-3),
0=3m+n
n=-3

解得m=1,n=-3,
故直线解析式为y2=x-3;

(2)连接BC,
若y1•y2≥0,
则抛物线y1=ax2+bx+c和直线BC:y2=mx+n图象在同一象限,
由图象可以看出当x<-1时,y1>0,y2<0,
当x≥-1,y1•y2≥0,
即当y1•y2≥0时,x的取值范围为x≥-1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求出直线OC的解析式及经过O、A、C三点的抛物线的解析式.
(2)试在(1)中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标.
(3)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.
(4)设从出发起,运动了t秒.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NPOC,交AC于点P,连接MP,已知动点运动了x秒,△MPA的面积为S.
(1)求点P的坐标.(用含x的代数式表示)
(2)写出S关于x的函数关系式,并求出S的最大值.
(3)当△APM与△ACO相似时,求出点P的坐标.
(4)△PMA能否成为等腰三角形?如能,直接写出所有点P的坐标;如不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在同一直角坐标系内,如果x轴与一次函数y=kx+4的图象以及分别过C(1,0)、D(4,0)两点且平行于y轴的两条直线所围成的图形ABDC的面积为7.
(1)求k的值;
(2)求过F、C、D三点的抛物线的解析式;
(3)线段CD上的一个动点P从点D出发,以1单位/秒的速度沿DC的方向移动(点P不重合于点C),过P点作直线PQ⊥CD交EF于Q.当P从点D出发t秒后,求四边形PQFC的面积S与t之间的函数关系式,并确定t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)己知抛物线y=ax2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴正半轴交于点C,且
cos∠CAB=
10
10

(1)求抛物线的解析式;
(2)如图(2),己知点H(0,1).问在抛物线上是否存在点G,使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(3),抛物线上点D在x轴上的正投影为点E(2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为______.
(2)实践运用
如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,斜坡PQ的坡度i=1:
3
,在坡面上点O处有一根1m高且垂直于水平面的水管OA,顶端A处有一旋转式喷头向外喷水,水流在各个方向沿相同的抛物线落下,水流最高点M比点A高出1m,且在点A测得点M的仰角为30°,以O点为原点,OA所在直线为y轴,过O点垂直于OA的直线为x轴建立直角坐标系.设水喷到斜坡上的最低点为B,最高点为C.
(1)写出A点的坐标及直线PQ的解析式;
(2)求此抛物线AMC的解析式;
(3)求|xC-xB|;
(4)求B点与C点间的距离.

查看答案和解析>>

同步练习册答案