精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.
应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为( )

A.(4,60°)
B.(4,45°)
C.(2 ,60°)
D.(2 ,50°)

【答案】A
【解析】解:如图,设正六边形的中心为D,连接AD,

∵∠ADO=360°÷6=60°,OD=AD,
∴△AOD是等边三角形,
∴OD=OA=2,∠AOD=60°,
∴OC=2OD=2×2=4,
∴正六边形的顶点C的极坐标应记为(4,60°).
故选A.
设正六边形的中心为D,连接AD,判断出△AOD是等边三角形,根据等边三角形的性质可得OD=OA,∠AOD=60°,再求出OC,然后根据“极坐标”的定义写出即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明身高为1.6米,通过地面上的一块平面镜C,刚好能看到前方大树的树梢E,此时他测得俯角为45度,然后他直接抬头观察树梢E,测得仰角为30度.求树的高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB=°,理由是:
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).

(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,

(1)求a,b,c的值;

(2)求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.
请你根据以上的信息,回答下列问题:
(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是
(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知平面直角坐标系中直线与x轴交于点A与y轴交于B与直线y=x交于点C

1求A、B、C三点的坐标;

2AOC的面积;

3已知点P是x轴正半轴上的一点COP是等腰三角形直接写点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形一腰上的高与另一腰的夹角为360,则该等腰三角形的底角的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店第一次用500元购进钢笔若干支,第二次又用500元购进该款钢笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了25支.
(1)求第一次每支钢笔的进价是多少元?
(2)若要求这两次购进的钢笔按同一价格全部销售完毕后获利不低于350元,问每支售价至少是多少元?

查看答案和解析>>

同步练习册答案