【题目】对于平面直角坐标系xOy中的定点P和图形F,给出如下定义:若在图形F上存在一点N,使得点Q,点P关于直线ON对称,则称点Q是点P关于图形F的定向对称点.
(1)如图,,,,
①点P关于点B的定向对称点的坐标是 ;
②在点,,中,______是点P关于线段AB的定向对称点.
(2)直线分别与x轴,y轴交于点G,H,⊙M是以点为圆心,为半径的圆.
①当时,若⊙M上存在点K,使得它关于线段GH的定向对称点在线段GH上,求的取值范围;
②对于,当时,若线段GH上存在点J,使得它关于⊙M的定向对称点在⊙M上,直接写出b的取值范围.
【答案】(1)①;②点C,D;(2)① 或;②.
【解析】
(1)①求出点P关于直线OB的对称点G即可.
②求出OP,OC,OD,OE的长即可判断.
(2)①求出两种特殊位置b的值即可.如图2中,作⊙M关于y轴的对称图形⊙M′,当直线GH与⊙M′在第一象限相切时,设切点为P,连接PM′.如图3中,以O为圆心,3为半径作⊙O,当直线GH与⊙O在第四象限点相切于点P时,连接OP,分别求出OH的值即可解决问题.
②如图4中,设⊙M交x轴于K,T,则K(﹣1,0),T(5,0).求出两种特殊位置b的值即可判断.
解:(1)①如图1中,
∵P(0,2),B(1,1),
∴点P关于OB的对称点G(2,0),
故答案为:(2,0).
②∵点C(0,﹣2),D(1,﹣),E(2,﹣1),
∴OP=2,OD=2,OC=2,OE=,
∴OP=OD=OC,
∴点C,D是点P关于线段AB的定向对称点.
故答案为:点C,D.
(2)①如图2中,作⊙M关于y轴的对称图形⊙M′,当直线GH与⊙M′在第一象限相切时,设切点为P,连接PM′,
当b>0时,
由题意得:tan∠HGO=,
∴∠PGM=30°,
∵PM′=1,∠MPG=90°,
∴MG=2MP=2,
∴OG=GM+OM=4,
∴OH=OGtan30°=,
当直线经过(-1,0)时, .
∴
若b<0时,
当当直线经过(1,0)时, .
如图3中,以O为圆心,3为半径作⊙O,当直线GH与⊙O在第四象限点相切于点P时,连接OP,
同法可得OH=2,∴
观察图象可知满足条件的b的值:﹣2≤b≤.
综上所述,b的取值范围是 或.
②如图4中,设⊙M交x轴于K,T,则K(﹣1,0),T(5,0).
以O为圆心,5为半径作⊙O,当直线GH与⊙O在第二象限相切于点J时,
可得OH=,
此时直线GH的解析式为y=x+,
当直线GH经过点K(﹣1,0)时,0=﹣+b,
可得b=,
此时直线GH的解析式为y=x+,
观察图象可知满足条件的b的值为:≤b≤.
科目:初中数学 来源: 题型:
【题目】如图,是半圆的直径,P是半圆与直径所围成的图形的外部的一定点,D是直径上一动点,连接并延长,交半圆于点C,连接.已知,设两点间的距离为,两点之间的距离为两点之间的距离为.
小明根据学习函数的经验,分别对函数随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)按照下表自变量x的值进行取点、画图、测量,分别得到与x的几组对应值;
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
0 | 0.47 | 1.31 | 5.02 | 5.91 | 6 | ||
6 | 5.98 | 5.86 | 5.26 | 3.29 | 1.06 | 0 |
(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,并画出函数的图象;
(3)结合函数图象,解决问题:当有一个角的正弦值为时,的长约为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某扶贫工作队为一贫困户提供了万元的无息脱贫贷款.该贫困户利用这笔贷款,注册了一家网店,销售一种成本价为元/件的农产品.已知销售价高于成本价,且不高于元/件,网店每月需支付电费等其它费用千元市场调查发现,该农产品每月销售量为(百件)与销售价(元/件)之间的函数关系如图所示
(1)求该网店每月利润(百元)与销售价(元/件)之间的函数关系式,并注明自变量的取值范围:
(2)该贫困户从网店开业起,最快在第几个月可用销售利润还清无息贷款?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴的负半轴交于点,与轴交于点,连结,点C(6,)在抛物线上,直线与轴交于点
(1)求的值及直线的函数表达式;
(2)点在轴正半轴上,点在轴正半轴上,连结与直线交于点,连结并延长交于点,若为的中点.
①求证:;
②设点的横坐标为,求的长(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C,D是⊙O上两点,且,连接OC,BD,OD.
(1)求证:OC垂直平分BD;
(2)过点C作⊙O的切线交AB的延长线于点E,连接AD,CD.
①依题意补全图形;
②若AD=6,,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB = 90,D为AB的中点,AE∥DC,CE∥DA.
(1)求证:四边形ADCE是菱形;
(2)连接DE,若AC =,BC =2,求证:△ADE是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的定点P和图形F,给出如下定义:若在图形F上存在一点N,使得点Q,点P关于直线ON对称,则称点Q是点P关于图形F的定向对称点.
(1)如图,,,,
①点P关于点B的定向对称点的坐标是 ;
②在点,,中,______是点P关于线段AB的定向对称点.
(2)直线分别与x轴,y轴交于点G,H,⊙M是以点为圆心,为半径的圆.
①当时,若⊙M上存在点K,使得它关于线段GH的定向对称点在线段GH上,求的取值范围;
②对于,当时,若线段GH上存在点J,使得它关于⊙M的定向对称点在⊙M上,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是该型号电风扇近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
求A、B两种型号的电风扇的销售单价;
若该商场准备用不多于5400元的金额再采购这两种型号的电风扇共30台,假设售价不变,那么商场应采用哪种采购方案,才能使得当销售完这些风扇后,商场获利最多?最多可获利多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com