精英家教网 > 初中数学 > 题目详情
6.(1)计算:(-3)2-($\frac{1}{5}$)-1-$\sqrt{8}$×$\sqrt{2}$+(-2)0
(2)先化简,再求值:$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$,其中x=-2.

分析 (1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(-3)2-($\frac{1}{5}$)-1-$\sqrt{8}$×$\sqrt{2}$+(-2)0的值是多少即可.
(2)先把$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$化简为最简分式,再把x=-2代入求值即可.

解答 解:(1)(-3)2-($\frac{1}{5}$)-1-$\sqrt{8}$×$\sqrt{2}$+(-2)0
=9-5-4+1
=1

(2)x=-2时,
$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$
=$\frac{2x(x-1)}{(x+1)(x-1)}$-$\frac{x}{x+1}$
=$\frac{2x}{x+1}$-$\frac{x}{x+1}$
=$\frac{x}{x+1}$
=$\frac{-2}{-2+1}$
=2

点评 (1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.
(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.
(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=$\frac{1}{{a}^{p}}$(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.计算:$\sqrt{5}$•$\sqrt{10}$=5$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(-3,1),B(0,3),C(0,1)
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1
(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.1.45°=87′.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是6步.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.
(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;
(2)求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:
①$\frac{DE}{BC}$=$\frac{1}{2}$;②$\frac{{S}_{△DOE}}{{S}_{△COB}}$=$\frac{1}{2}$;③$\frac{AD}{AB}$=$\frac{OE}{OB}$;④$\frac{{S}_{△ODE}}{{S}_{△ADC}}$=$\frac{1}{3}$
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案