精英家教网 > 初中数学 > 题目详情

直线l过正方形ABCD顶点B,点A、C到直线l距离分别是1和2,则正方形边长是(    )

A.3        B.         C.      D.以上都不对

B

解析试题分析:解:∵∠CBF+∠FCB=90°,∠CBF+∠ABE=90°,
∴∠ABE=∠FCB,同理∠BAE=∠FBC,
∵AB=BC,∴△ABE≌△BCF(ASA)
∴BE=CF,
在直角△ABE中,AE=1,BE=2,
∴AB=5.故选B.
考点:直角三角形中勾股定理的运用
点评:本题考查了正方形各边相等的性质,考查了直角三角形中勾股定理的运用,本题中求证△ABE≌△BCF是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在△ABC中,AB=AC,CD⊥BA交BA的延长线于点D.一正方形EFGH的一条边EH与AC边在一条直线上,另一条边EF恰好经过点B.
(1)在图1中,请你通过观察、测量BE与CD的长度,猜想并写出BE与CD满足的数量关系,然后证明你的猜想;
(2)将正方形EFGH沿AC方向平移到图2所示的位置时,EH边仍与AC边在同一直线上,另一条边EF交BC边于点M,过点M作MN⊥BA于点N.此时请你通过观察、测量ME、MN与CD的长度,猜想并写出ME、MN与CD之间满足的数量关系,然后证明你的猜想;
(3)将正方形EFGH沿CA方向平移到图3所示的位置时,EH边仍与AC边在同一直线上,另一条边EF的延长线交CB边的延长线于点M,过点M作MN⊥AB交AB的延长线于点N.此时请你猜想并写出ME、MN与CD之间满足的数量关系,不需证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知△ABC,分别以BC、AC为边向形外作正方形BDEC,正方形ACFG,过C点的直线MN垂直于AB于N,交EF于M,
(1)当∠ACB=90°时,试证明:①EF=AB;②M为EF的中点;

(2)当∠ACB为锐角或钝角时,①EF与AB的数量关系为
当∠ACB为锐角时,EF>AB,当∠ACB为钝角时,EF<AB
(分情况说明);
②M还是EF的中点吗?请说明理由.(选择当∠ACB为锐角或钝角时的一种情况来说明)

查看答案和解析>>

科目:初中数学 来源: 题型:

25、(1)如图1,在方格纸中有一个格点三角形(三角形的顶点在小正方形的顶点上),把三角形ABC绕A点顺时针旋转90°,可以得到三角形ADE,再将三角形ADE向左平移5格,得到三角形FHG.请用直尺在图1中画出三角形ADE和三角形FHG;
(2)如图2,用直尺过点A画AB的垂线l1,过点C画AB的平行线l2,并回答:直线l1、l2之间有怎样的位置关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,直线l过正方形ABCD的顶点B,A、C两顶点在直线l同侧,过点A、C分别作AE⊥直线l、CF⊥直线l,垂足分别为E、F.
(1)求证:EF=AE+CF;
证明:∵四边形ABCD是正方形
∴AB=BC,∠ABC=90°
∵AE⊥直线l、CF⊥直线l.
∴∠AEB=∠BFC=90°
∴∠EAB+∠ABE=90°,
又∵∠ABE+∠CBF=180°-∠ABC=180°-90°=90°
∠EAB=∠CBF
∠EAB=∠CBF
(同角的余角相等)
在△AEB与△BFC中
∵(
∠AEB=∠BFC
∠EAB=∠CBF
AB=BC
∠AEB=∠BFC
∠EAB=∠CBF
AB=BC

∴△AEB≌△BFC(
AAS
AAS

AE=BF,EB=FC
AE=BF,EB=FC
全等三角形的对应边相等
全等三角形的对应边相等

∵EF=BF+EB
∴EF=AE+CF(等量代换)
(2)当A、C两顶点在直线l的两侧时(如图2),其它条件不变,那么EF、AE、CF满足什么数量关系?并证明你所得到的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,直线l过正方形ABCD的顶点B,A、C两顶点在直线l同侧,过点A、C分别作AE⊥直线l、CF⊥直线l,垂足分别为E、F.
(1)求证:EF=AE+CF;
证明:∵四边形ABCD是正方形
∴AB=BC,∠ABC=90°
∵AE⊥直线l、CF⊥直线l.
∴∠AEB=∠BFC=90°
∴∠EAB+∠ABE=90°,
又∵∠ABE+∠CBF=180°-∠ABC=180°-90°=90°
∴______(同角的余角相等)
在△AEB与△BFC中
∵(______)
∴△AEB≌△BFC(______)
∴______(______)
∵EF=BF+EB
∴EF=AE+CF(等量代换)
(2)当A、C两顶点在直线l的两侧时(如图2),其它条件不变,那么EF、AE、CF满足什么数量关系?并证明你所得到的结论.

查看答案和解析>>

同步练习册答案