如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA="16" cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.
(1)用含t的式子表示△OPQ的面积S;
(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;
(3)当△OPQ∽△ABP时,抛物线y=x2+bx+c经过B、P两点,求抛物线的解析式;
(4)在(3)的条件下,过线段BP上一动点M作轴的平行线交抛物线于N,求线段MN的最大值.
(1);(2)是;(3);(4)9
解析试题分析:(1)根据速度与时间的关系分别表示出CQ、OP、OQ的长度,然后利用三角形的面积公式列列式整理即可得解;
(2)用矩形OABC的面积减去△ABP与△BCQ的面积,根据面积公式分别列式进行整理即可得解;
(3)根据相似三角形对应边成比例列出比例式,然后代入数据求解即可得到t值,从而得到点P的坐标;
(4)先求出直线BP的解析式,然后根据直线解析式与抛物线解析式设出点M、N的坐标,再根据两点间的距离表示出MN的长度,根据二次函数的最值问题解答.
(1)∵CQ=t,OP=2t,CO=8,
∴OQ=8-t,
=128-64+8t-8t=64,
∴四边形OPBQ的面积为一个定值,且等于64;
(3)当△OPQ∽△ABP时,./
解得:t1=2,t2=8(舍去),
此时P(4,0),
∵B(16,8),
∴抛物线解析式是;
(4)设直线BP的解析式为y=kx+b
∴直线BP的解析式是
∵M在BP上运动,
∴4≤m≤16,
∴当时,MN有最大值是9.
考点:二次函数的综合题
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
科目:初中数学 来源: 题型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com