精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.

证明:∵CE⊥AB于E,BF⊥AC于F,
∴∠AFB=∠AEC.
∵∠A为公共角,
∴△ABF∽△ACE(两角对应相等的两个三角形相似).
∴AB:AC=AF:AE,∠A为公共角.
∴△AEF∽△ACB(两边对应成比例且夹角相等的两个三角形相似).
分析:根据两角对应相等的三角形是相似三角形可得△AEC∽△AFB,根据两边对应成比例且夹角相等的三角形是相似三角形可证明△AEF∽△ACB.
点评:考查相似三角形的判定:
(1)两角对应相等的两个三角形相似.
(2)两边对应成比例且夹角相等的两个三角形相似.
(3)三边对应成比例的两个三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案