精英家教网 > 初中数学 > 题目详情
(2010•株洲)如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.
求证:(1)∠CAB=∠BOD;
(2)△ABC≌△ODB.

【答案】分析:(1)根据直径所对的圆周角是直角及∠ABC=30°可知∠CAB=60°,然后由圆周角定理可知∠AOC=60°,再根据对顶角相等即可解答.
(2)根据直角三角形的性质求出AC=OB,再由ASA定理即可求出△ABC≌△ODB.
解答:证明:(1)∵AB是⊙O的直径,
∴∠ACB=90°,由∠ABC=30°,
∴∠CAB=60°,
又OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOD=60°,
∴∠CAB=∠BOD.

(2)在Rt△ABC中,∠ABC=30°,得AC=AB,
又OB=AB,
∴AC=OB,
由BD切⊙O于点B,得∠OBD=90°,
在△ABC和△ODB中,
∴△ABC≌△ODB.
点评:本题考查了圆的切线性质、直角三角形的性质、三角形全等的判定方法及圆周角定理的相关知识,有一定的综合性,但难度不大.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《三角形》(02)(解析版) 题型:选择题

(2010•株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )

A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2010•株洲)如图,直角△ABC中,∠C=90°,,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源:2010年湖南省株洲市中考数学试卷(解析版) 题型:解答题

(2010•株洲)如图,直角△ABC中,∠C=90°,,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源:2010年湖南省株洲市中考数学试卷(解析版) 题型:填空题

(2010•株洲)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是    cm2

查看答案和解析>>

同步练习册答案