【题目】如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E点.
(1)当∠BDA=115°时,∠BAD=___°,∠DEC=___°;
(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
【答案】(1) 25,115;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)可以;当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
【解析】
(1)根据三角形内角和定理,将已知数值代入即可求出,根据平角的定义,可求出的度数,根据三角形内和定理,即可求出.
(2)当时,利用可证明,即可得出.
(3)假设是等腰三角形,分为三种情况讨论:①当时,,根据,得出此时不符合;②当时,求出,求出,根据三角形的内角和定理求出,根据三角形的内角和定理求出即可;③当时,求出,求出,根据三角形的内角和定理求出.
(1)在中, ,,,.
,,,.
故答案为:,;
(2)当时,.理由如下:
,,又,,.
在和中,,,当时,,;
(3),,分三种情况讨论:
①当时,,,此时不符合;
②当时,即,,;
;
③当时,,,;
当或时,是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.
(1)若梯子底端离墙角的距离OB为0.7米,求这个梯子的顶端A距地面有多高?
(2)在(1)的条件下,如果梯子的顶端A下滑0.4米到点A′,那么梯子的底端B在水平方向滑动的距离BB′为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于非零实数a、b,规定ab=,若(x﹣3)(3﹣2x)=0,则x的值为_____;若关于x的方程(x﹣3)(3﹣2x)﹣(3﹣x)(mx﹣2)=﹣1无解,则m的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.
①求证:△BCE是等边三角形;
②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC的周长为( )
A. 20 B. 22 C. 14 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运度为每秒2个单位长度当点M第一次到达B点时,M、N同时停止运动.
点M、N运动几秒后,M、N两点重合?
点M、N运动几秒后,可得到等边三角形?
当点M、N在BC边上运动时,能否得到以MN为底边的等腰?如存在,请求出此时M、N运动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为坐标原点,点C的坐标为(1,0),∠ACB=90°,∠B=30°,当点A在反比例函数y=的图象上运动时,点B在函数_____(填函数解析式)的图象上运动.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为(米),与桌面的高度为(米),运行时间为(秒),经多次测试后,得到如下部分数据:
(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0. 8 | … |
(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
(1)当为何值时,乒乓球达到最大高度?
(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,与满足
①用含的代数式表示;
②球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com