精英家教网 > 初中数学 > 题目详情
如图,⊙O表示一圆形工件,AB=15cm,OM=8cm,并且MB:MA=1:4,求工件半径的长。
解:过O作OC⊥AB于C
则BC=cm
由BM:AM=1:4
得BM=3
故CM=-3=4.5
在Rt△OCM中,OC2=82-(2=
连接OA
则OA===10
即工件的半径长为10cm。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法)
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
等分圆及扇形面的次数(n) 1 2 3 4 n
所得扇形的总个数(S) 4 7
(3)请你推断,能不能按上述操作过程,将原来的圆形纸板剪成33个扇形?为什么?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《尺规作图》(01)(解析版) 题型:解答题

(2002•济南)如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法)
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
等分圆及扇形面的次数(n)1234n
所得扇形的总个数(S)47
(3)请你推断,能不能按上述操作过程,将原来的圆形纸板剪成33个扇形?为什么?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2002•济南)如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法)
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
等分圆及扇形面的次数(n)1234n
所得扇形的总个数(S)47
(3)请你推断,能不能按上述操作过程,将原来的圆形纸板剪成33个扇形?为什么?

查看答案和解析>>

科目:初中数学 来源:2002年山东省济南市中考数学试卷(解析版) 题型:解答题

(2002•济南)如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法)
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
等分圆及扇形面的次数(n)1234n
所得扇形的总个数(S)47
(3)请你推断,能不能按上述操作过程,将原来的圆形纸板剪成33个扇形?为什么?

查看答案和解析>>

同步练习册答案