精英家教网 > 初中数学 > 题目详情
3.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个最小的圆去覆盖△ABC,请你在如图所示的网格中,用直尺画出该圆的圆心(保留作图痕迹),并简要说明画图的方法(不要求证明)填什么.

分析 根据题意得出△ABC的外接圆的圆心位置O,再以OA为半径画圆即为所求.

解答 解:分别作出线段AB,BC,AC的垂直平分线,以它们的交点为圆心,以OA,OB或OC为半径画圆,即为所求.

点评 此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知x=$\sqrt{5}$+2,y=$\frac{1}{\sqrt{5}+2}$,求($\frac{{x}^{2}}{x-y}+\frac{{y}^{2}}{y-x}$)÷xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读下面材料:
小乔遇到了这样一个问题:如图1,在Rt△ABC中,∠C=90°,D,E分别为CB,CA边上的点,且AE=BC,BD=CE,BE与AD的交点为P,求∠APE的度数;

小乔发现题目中的条件分散,想通过平移变换将分散条件集中,如图2,过点B作BF∥AD且BF=AD,连接EF,AF,从而构造出△AEF与△CBE全等,经过推理和计算能够使问题得到解决(如图2).
请回答:∠APE的度数为45°.
参考小乔同学思考问题的方法,解决问题:
如图3,AB为⊙O的直径,点C在⊙O上,D、E分别为CB,CA上的点,且AE=$\frac{1}{2}$BC,BD=$\frac{1}{2}CE$,BE与AD交于点P,在图3中画出符合题意的图形,并求出sin∠APE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.设方程(x-a)(x-b)-x=0的两根是c、d,则方程(x-c)(x-d)+x=0的根是x=a,x=b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.抛物线y=1-x2与y轴交于点A,经过点B(0,-1)作y轴的垂线交上述抛物线于点C,D,点T是线段CD上一点,横坐标为t,连接AT交x轴于点N,点M是上述抛物线上一动点(M不与点A重合且在CD的上方),其横坐标为m,延长MN至点G,使NM=NG.
(1)用m,t表示点G 的坐标;(图1供参考)
(2)设以点T为顶点的另一条抛物线恰好经过点G,M,且点M到CD的距离HM=0.25,说明点G是否在抛物线y=1-x2上,并求MT的长度.(图2供参考)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先阅读材料,然后解方程组:
材料:解方程组:
$\left\{\begin{array}{l}{\frac{x+1}{3}=2y①}\\{2(x+1)-y=11②}\end{array}\right.$
解:由①得x+1=6y③
把③代入②得×6y-y=11,得y=1
把y=1代入③,得x+1=6,∴x=5
∴方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$.
上述方法为“整体代入法”,请用上述方法解下列方程组:
$\left\{\begin{array}{l}{3x+2y=5x+2}\\{2(3x+2y)=11x+7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算下列各式的值;
(1)|$\sqrt{2}-\sqrt{3}$|-|$\sqrt{3}-\sqrt{2}$|;
(2)$\sqrt{(2-\sqrt{5})^{2}}$+|2$\sqrt{5}$-8|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.用加减法解下列方程组:
(1)$\left\{\begin{array}{l}{3m-2n=5}\\{4m+2n=9}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{9x+2y=20}\\{3x+4y=10}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,矩形ABCD的对角线AC、BD相交于点O,CE⊥BD,且DE:EB=3:1,OF⊥AB于F,OF=3,求矩形对角线的长.

查看答案和解析>>

同步练习册答案