精英家教网 > 初中数学 > 题目详情

【题目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(结果用含x,y的代数式表示

(2)当互为相反数时,求(1)中代数式的值.

【答案】(1);(2)原式=0.

【解析】

(1)先化简,把A,B的值代入,即可求出答案;

(2)根据相反数求出x、y的值,再代入求出即可.

解:(1)∵A=x-2y,B=-x-4y+1,

∴2(A+B)-(A-B),

=2A+2B-A+B,

=A+3B,

Ax2yB=-x4y1时,

原式= x2y +3(-x-4y+1),

= x2y -3x-12y+3,

=

(2)∵|x+2 |互为相反数,

∴|x+2 |+=0,

∴x+2=0, =0,

∴x=-2,y=

∴2(A+B)-(A-B)==-2×(-2)-14×+3=0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知圆的两条平行的弦长分别为6cm和8cm,圆的半径为5cm,则两条平行弦的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD⊥AC,AB=6,AC=5 ,∠A=30°.
①求BD和AD的长;
②求tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.
(1)求线段PQ的长;
(2)问:点P在何处时,△PFD∽△BFP,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:

(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.

(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.

(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y= 的图象过点A(1,2).
(1)求该函数的解析式;
(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;
(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=-x与函数y=-的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,求四边形ACBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个棱长为的正方体的每个面等分成个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去个小正方体),所得到的几何体的表面积是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

同步练习册答案