精英家教网 > 初中数学 > 题目详情

如图,线段PQ过△ABC重心M,P,Q分别内分AB,AC为比值p,q,则数学公式=


  1. A.
    2
  2. B.
    1
  3. C.
    数学公式
  4. D.
    无法确定
B
分析:根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案.
解答:解:分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则ME=MF,
则根据梯形的中位线定理得:
∵MD是梯形的中位线,
∴BE+CF=2MD,
=+=+===1.
故选B.
点评:此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点.
(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等;
(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等;
(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,直线y=-
1
2
x+6与x轴、y轴分别交于B、C两点.
(1)直接写出B、C两点的坐标;
(2)直线y=x与直线y=-
1
2
x+6交于点A,动点P从点O沿OA方向以每秒1个单位的速度运动,设运动时间为t秒(即OP=t).过点P作PQ∥x轴交直线BC于点Q.
①若点P在线段OA上运动时(如图1),过P、Q分别作x轴的垂线,垂足分别为N、M,设矩形PQMN的面积为S,写出S和t之间的函数关系式,并求出S的最大值.
②若点P经过点A后继续按原方向、原速度运动,当运动时间t为何值时,过P、Q、O三点的圆与x轴相切?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知过A(2,4)分别作x轴、y轴的垂线,垂足分别为M、N,若点P从O点出发,沿OM作匀速运动,1分钟可到达M点,点Q从M点出发,沿MA作匀速运动,1分钟可到达A点.
(1)经过多少时间,线段PQ的长度为2?
(2)写出线段PQ长度的平方y与时间t之间的函数关系式和t的取值范围;
(3)在P、Q运动过程中,是否可能出现PQ⊥MN?若有可能,求出此时间t;若不可能,请说明理由;
(4)是否存在时间t,使P、Q、M构成的三角形与△MON相似?若存在,求出此时间t;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知过A(2,4)分别作x轴、y轴的垂线,垂足分别为M、N,若点P从O点出发,沿OM作匀速运动,1分钟可到达M点,点Q从M点出发,沿MA作匀速运动,1分钟可到达A点.
(1)经过多少时间,线段PQ的长度为2?
(2)写出线段PQ长度的平方y与时间t之间的函数关系式和t的取值范围;
(3)是否存在时间t,使P、Q、M构成的三角形与△MON相似?若存在,求出此时间t;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案