精英家教网 > 初中数学 > 题目详情
17.如图,已知抛物线y=ax2+bx+c经过点A(-1,0)、B(3,0)、C(0,3)三点.
(1)求抛物线相应的函数表达式;
(2)点M是线段BC上的点(不与B、C重合),过M作MN∥y轴交抛物线于N,连接NB.若点M的横坐标为t,是否存在t,使MN的长最大?若存在,求出sin∠MBN的值;若不存在,请说明理由;
(3)若对一切x≥0均有ax2+bx+c≤mx-m+13成立,求实数m的取值范围.

分析 (1)用待定系数法即可求出抛物线的解析式;
(2)先求出直线BC的解析式,设M(t,-t+3),N(t,-t2+2t+3),得出MN是t的二次函数,即可求出MN的最大值;延长NM交OB于E,证出△BME为等腰直角三角形,求出BE、BM、BN,过点M作△BNM的高MH,则∠MHB=∠MHN=90°,设BH=x,根据勾股定理求出BH,再由勾股定理求出MH,即可求出sin∠MBN;
(3)令y1=-x2+2x+3;y2=mx-m+13,得直线y2=mx-m+13过点(1,13);当y1=y2时,-x2+2x+3=mx-m+13,得出△=m2-36=0,求出m的值,当直线y2=mx-m+13过点C时,m=10,结合图象即可得出m的取值范围.

解答 解:(1)根据题意得:$\left\{\begin{array}{l}{a-b+c=0}&{\;}\\{9a+3b+c=0}&{\;}\\{c=3}&{\;}\end{array}\right.$,
解得:a=-1,b=2,c=3,
∴抛物线的函数表达式为:y=-x2+2x+3;
(2)存在;理由如下:设直线BC的解析式为y=kx+b,
把B(3,0)、C(0,3)代入得:$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$,
解得:k=-1,b=3,
∴直线BC的解析式为:y=-x+3,
设M(t,-t+3),N(t,-t2+2t+3),
则MN=(-t2+2t+3)-(-t+3)=-t2+3t=-(t-$\frac{3}{2}$)2+$\frac{9}{4}$;
∵-1<0,
∴MN由最大值,
当t=$\frac{3}{2}$时,MN的最大值为$\frac{9}{4}$;
此时M($\frac{3}{2}$,$\frac{3}{2}$),N($\frac{3}{2}$,$\frac{15}{4}$),
∴MN=$\frac{15}{4}$-$\frac{3}{2}$=$\frac{9}{4}$,
∵B(3,0)、C(0,3),
∴OB=OC=3,
∵∠BOC=90°,
∴∠OBC=45°,
延长NM交OB于E,如图1所示:
则ME⊥OB,
∴△BME为等腰直角三角形,
∴∠MBE=45°,
∵BE=3-$\frac{3}{2}$=$\frac{3}{2}$,
∴BM=$\sqrt{2}$BE=$\frac{3\sqrt{2}}{2}$;
BN=$\sqrt{B{E}^{2}+N{E}^{2}}$=$\sqrt{(\frac{3}{2})^{2}+(\frac{15}{4})^{2}}$=$\frac{3\sqrt{29}}{4}$;
过点M作△BNM的高MH,则∠MHB=∠MHN=90°,
∵MH2=BM2-BH2=MN2-NH2
设BH=x,则NH=$\frac{3\sqrt{29}}{4}$-x,
∴($\frac{3\sqrt{2}}{2}$)2-x2=($\frac{9}{4}$)2-($\frac{3\sqrt{29}}{4}$-x)2
解得:x=$\frac{21\sqrt{29}}{58}$,
∴BH=$\frac{21\sqrt{29}}{58}$,
∴MH=$\sqrt{(\frac{3\sqrt{2}}{2})^{2}-(\frac{21\sqrt{29}}{58})^{2}}$=$\frac{9\sqrt{29}}{58}$;
∴sin∠MBN=$\frac{MH}{BM}$=$\frac{3\sqrt{58}}{58}$;
(3)令y1=-x2+2x+3; y2=mx-m+13,
∵x=1时,y2=13,
∴直线y2=mx-m+13过点(1,13),
当y1=y2时,-x2+2x+3=mx-m+13,
整理得:x2+(m-2)x-m+10=0,
△=(m-2)2-4×1×(-m+10)=m2-36=0,
解得:m=-6,或m=6,
当直线y2=mx-m+13过点C时,m=10,
由图象可知(如图2所示),
当-6≤m≤10时,均有y1≤y2
∴m的取值范围为:-6≤m≤10.

点评 本题是二次函数综合题目,考查了用待定系数法求二次函数的解析式、求一次函数的解析式、等腰直角三角形的判定与性质、勾股定理、三角函数等知识;本题难度较大,综合性强,特别是(2)中,需要通过作辅助线证明等腰直角三角形和运用勾股定理才能得出结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$

回答下列问题:
(1)化简:$\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$=$\sqrt{n+1}-\sqrt{n}$;(n为正整数)
(2)利用上面所揭示的规律计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2008}+\sqrt{2009}}$+$\frac{1}{\sqrt{2009}+\sqrt{2010}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.我市举行阳光体育活动某校八年级的体育老师为了了解本年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己最喜欢的一种球类),请你根据这两幅图形解答下列问题:
(1)将条形统计图补充完整;
(2)八(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表或画树状图的方法求出刚好抽到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知△ABC是等边三角形,D、E分别是AC、BC上的两点,AD=CE,且AE与BD交于点P,BF⊥AE于点F.
(1)求证:△ABD≌△CAE;
(2)若BP=6,求PF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,△ACD、△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,∠BAC=30°,若△EAC绕某点逆时针旋转后能与△BAD重合,问:
(1)旋转中心是A;
(2)逆时针旋转90度;
(3)若EC=10cm,则BD的长度是10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若kb>0,且不等式kx+b>0的解集是x<-$\frac{b}{k}$,则下列判断正确的是(  )
A.k>0,b>0B.k>0,b<0C.k<0,b<0D.k<0,b>0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:$\frac{a-3}{3{a}^{2}-6a}$÷($\frac{5}{a-2}$-a-2),其中a2+3a-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知关于x的不等式(1-a)x>-6的解集为x<$\frac{6}{a-1}$,则a的取值范围是a>1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:(4,7).

查看答案和解析>>

同步练习册答案