精英家教网 > 初中数学 > 题目详情
如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?
分析:根据图形得出符合条件的线段有4条,根据勾股定理求出线段的长即可.
解答:解:如图(2),AH=1+1+1=3,CH=1,
即最长线段AC的长度是:
32+12
=
10
,这样的线段可以画4条,
如图(2)线段EB′、线段FM、线段A′C′、线段GH;且线段的长度都是
10
点评:本题考查了平面展开-最短路线问题和勾股定理,关键是能正确画出图形,题目比较典型,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示为一上细下粗的容器,上部横截面积为S,下部横截面积为2S,内有密度为ρ的液体,容器的底部有高为h的气泡,当气泡上升,从细部升出液面时(液面仍在细部),重力所做的功为___________.

查看答案和解析>>

科目:初中数学 来源:贵州省中考真题 题型:解答题

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F。
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连结B1C(请在图(3)中画出)。当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?

查看答案和解析>>

科目:初中数学 来源:2011年贵州省遵义市凤冈县石径中学中考数学模拟试卷(解析版) 题型:解答题

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2008•遵义)如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?

查看答案和解析>>

同步练习册答案