精英家教网 > 初中数学 > 题目详情
若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).则S=a+b+c的值的变化范围是
 
分析:将已知两点坐标代入二次函数解析式,得出c的值及a、b的关系式,代入S=a+b+c中消元,再根据对称轴的位置判断S的取值范围即可.
解答:解:将点(0,1)和(-1,0)分别代入抛物线解析式,得c=1,a=b-1,
∴S=a+b+c=2b,
由题设知,对称轴x=-
b
2a
>0且a<0

∴2b>0.
又由b=a+1及a<0可知2b=2a+2<2.
∴0<S<2.
故本题答案为:0<S<2.
点评:本题考查了二次函数图象上点的坐标特点,运用了消元法的思想,对称轴的性质,需要灵活运用这些性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若二次函数y=ax2+bx+c的图象经过点(0,-1),(5,-1),则它的对称轴方程是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、若二次函数y=ax2+2x+c的值总是负值,则
a<0,ac>0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•河北区模拟)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个不同的交点A(1,0)、B(-3,0),与y轴的负半轴交于点C,且S△ABC=6.
(Ⅰ)求该二次函数的解析式和顶点P的坐标;
(Ⅱ)经过A、B、P三点画⊙O′,求⊙O′的面积;
(Ⅲ)设抛物线上有一动点M(a,b),连AM,BM,试判断△ABM能否是直角三角形?若能,求出M点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)若二次函数y=ax2+bx+c(a≠0)的图象如图,则直线y=bx-c不经过(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点O为坐标原点,∠AOB=30°,∠B=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A,B,O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括O,B点)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出点C的坐标及四边形ABCO的最大面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案