精英家教网 > 初中数学 > 题目详情
17.一棵大树AB(假定大树AB垂直于地面)被刮倾斜15°后折断在地上,树的顶部恰好接触到地面D处(如示意图所示),量得大树的倾斜角∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求大树AB原来的高度是多少米?(结果保留整数,参考数据:$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7,$\sqrt{6}$≈2.4)

分析 过点A作AE⊥CD于点E,先由直角三角形的性质求出∠DAC与∠DAE的度数,再由锐角三角函数的定义求出AE及DE的长,在Rt△ACE中,根据AC=$\frac{CE}{sin45°}$即可得出结论.

解答 解:如图,过点A作AE⊥CD于点E,
∵∠BAD=90°,∠BAC=15°
∴∠DAC=∠BAD-∠BAC=75°,
∵∠ADC=60°,∠AED=90°,
∴∠DAE=90°-∠ADC=30°.
在Rt△ADE中,AE=AD•sin60°=2$\sqrt{3}$,
DE=AD•cos60°=4•cos60°=2.
在Rt△ACE中,
∵∠CAE=∠DAC-∠DAE=45°,
∴CE=AE•tan45°=2$\sqrt{3}$,
∴AC=$\frac{CE}{sin45°}$=2$\sqrt{6}$,
AB=AC+CE+DE=2$\sqrt{6}$+2$\sqrt{3}$+2≈10(米),
即大树AB原来的高度约为10米.

点评 本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,对于线段MN的“三等分变换”,给出如下定义:如图1,点P,Q为线段MN的三等分点,即MP=PQ=QN,将线段PM以点P为旋转中心顺时针旋转90°得到PM′,将线段QN以点Q为旋转中心顺时针旋转90°得到QN′,则称线段MN进行了三等分变换,其中M′,N′记为点M,N三等分变换后的对应点.
例如:如图2,线段MN,点M的坐标为(1,5),点N的坐标为(1,2),则点P的坐标为(1,4),点Q的坐标为(1,3),那么线段MN三等分变换后,可得:M′的坐标为(2,4),点N′的坐标为(0,3).

(1)若点P的坐标为(2,0),点Q的坐标为(4,0),直接写出点M′与点N′的坐标;
(2)若点Q的坐标是(0,-$\frac{\sqrt{2}}{2}$),点P在x轴正半轴上,点N′在第二象限.当线段PQ的长度为符合条件的最小整数时,求OP的长;
(3)若点Q的坐标为(0,0),点M′的坐标为(-3,-3),直接写出点P与点N的坐标;
(4)点P是以原点O为圆心,1为半径的圆上的一个定点,点P的坐标为($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)当点N′在圆O内部或圆上时,求线段PQ的取值范围及PQ取最大值时点M′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由;
(3)若AB=1,求HG•HB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若a是33的立方根,$\sqrt{{4}^{2}}$的平方根是b,则$\sqrt{a+b}$=$\sqrt{5}$或1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为120°,AB的长为30cm,无贴纸部分AD的长为10cm,则贴纸部分的面积等于$\frac{800}{3}$πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,⊙O的半径为5,点P是弦AB延长线上的一点,连接OP,若OP=8,∠P=30°,则弦AB的长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知实数a,b满足$\sqrt{a+1}$$+\sqrt{b-1}$=0,求a2012+b2013的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,点D为BC上一点,过A,B,D三点作⊙O,AE是⊙O的直径,AC是⊙O的切线,AD=DC,连结DE.
(1)求证:AB=AC;
(2)若sinE=$\frac{1}{3}$,AC=4$\sqrt{2}$a,求△ADE的周长(用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:7+(-4)=3.

查看答案和解析>>

同步练习册答案