精英家教网 > 初中数学 > 题目详情
(2011•自贡)如图,在平面直角坐标系中,半径为1的⊙B经过坐标原点0,且与x轴、y轴分别交于A,C两点,过O作⊙B的切线与AC的延长线交于点D.已知点A的坐标为(
3
,0).
(1)求sin∠CAO的值;
(2)若反比例函数的图象经过点D,求该反比例函数的解析式.
分析:(1)由A的坐标及A的位置,得到OA的长,再由AC为圆的直径,根据半径的长得出AC的长,在直角三角形OAC中,根据勾股定理求出OC的长,进而根据∠CAO的对边OC及斜边AC的长,利用锐角三角形函数定义即可求出sin∠CAO的值;
(2)连接OB,由OD为圆B的切线,根据切线的性质得到OB与OD垂直,即∠BOD为直角,又OA=OB,根据等边对等角可得一对角相等,再由∠CBO为三角形AOB的外角,根据外角性质可得出∠CBO的度数,进而在直角三角形BOD中求出∠ODB的度数,可得出∠ODB=∠OAD,根据等角对等边可得OA=OD,由OA的长得出OD的长,然后过D作DE垂直于x轴,由∠DOE为三角形AOD的外角,得出∠DOE的度数,根据斜边OD的长,利用正弦及余弦函数定义求出DE与OE的长,进而确定出点D的坐标,设过D的反比例函数解析式为y=
k
x
,把D坐标代入确定出k的值,即可确定出反比例的解析式.
解答:解:(1)由A(
3
,0)得,OA=
3

在Rt△AOC中,由AC=2,OA=
3

根据勾股定理得:OC=
AC2-AO2
=1

则在Rt△AOC中,sin∠CAO=
OC
AC
=
1
2

(2)连接0B,过D作DE⊥x轴于点E,

∵OD切⊙B于0,∴0B⊥OD,
∵在Rt△AOC中,sin∠CAO=
1
2

∵BA=OB,
∴∠CAO=∠BOA=30°,
∴∠DBO=∠CAO+∠BOA=2∠BOA=60°,又∠BOD=90°,
∴∠ODB=30°,即∠ODA=∠OAD,
∴OD=OA=
3

∵∠DOE=60°,DO=
3

∴OE=
1
2
0D=
3
2
,DE=OD•sin60°=
3
2

∴点D坐标为(-
3
2
3
2
),
设反比例函数解析式为y=
k
x
,由其图象过点D,
3
2
=
k
-
3
2
,即k=-
3
3
4

则该反比例函数解析式为y=
-
3
3
4
x
,即y=-
3
3
4x
点评:此题考查了切线的性质,三角形外角的性质,勾股定理,锐角三角函数定义,以及利用待定系数法求反比例函数的解析式,已知切线,常常连接圆心与切点,由切线性质得垂直,利用直角三角形的性质来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•自贡)如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有
4
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•自贡)如图,一根木棒(AB)长为2a,斜靠在与地面(OM)垂直的墙壁(ON)上,与地面的倾斜角(∠ABO)为60°,当木棒A端沿N0向下滑动到A′,AA′=(
3
-
2
)a
,B端沿直线OM向右滑动到B′,则木棒中点从P随之运动到P′所经过的路径长为
1
12
1
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•自贡)如图,点B,C在∠SAF的两边上.且AB=AC.
(1)请按下列语句用尺规画出图形(不写画法,保留作图痕迹).
①AN⊥BC,垂足为N;
②∠SBC的平分线交AN延长线于M;
③连接CM.
(2)该图中有
3
3
对全等三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•自贡)如图,在△ABC中,AB=BC=1,∠ABC=120°,将△ABC绕点B顺时针旋转30°得△A1BC1.A1B交AC于点E,A1C1分别交AC,BC于点D,F.
(1)试判断四边形BC1DA的形状,并说明理由;
(2)求ED的长.

查看答案和解析>>

同步练习册答案