当x=、y=-、z=-时,分别求出下列代数式的值.
(1)x-(-y)+(-z) (2)x+(-y)-(+z)
(3)-(-x)-y+z (4)-x-(-y)+z
科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:044
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函数;如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.
例如:f(x)=x3+x.
当x取任意实数,
f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)
即f(-x)=-f(x)
所以f(x)=x3+x为奇函数.
又如:f(x)=|x|,
当x取任意实数时,f(-x)=|-x|=|x|=f(x),
即f(-x)=f(x)
所以f(x)为偶函数.
问题:(1)下列函数:
①y=x4;②y=x2+1;③y=;④y=;⑤y=x+.
所有奇函数是________,所有偶函数是________(只填序号);
(2)请你再分别写出一个奇函数,一个偶函数.
查看答案和解析>>
科目:初中数学 来源:广东省汕头市金平区2011届九年级毕业模拟考试数学试题 题型:044
阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连结OC,OA,OB,
∴OC⊥AB,OA=OB,∴∠AOC=AOB,AB=2BC.
在Rt△AOC中,,OC=r,
∴AC=r·tan60°,AB=2r·tan60°,
∴S△OAB=·r·2rtan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2·tan60°.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=________;
(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形;
(3)如图④,根据以上探索过程,请直接写出S正n边形________.
查看答案和解析>>
科目:初中数学 来源:2013届江苏省徐州市中考模拟数学试卷(B卷)(带解析) 题型:填空题
如果记y==f(x),并且f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()==;那么f(1)+f(2)+f()+f(3)+f()+…+f(2013)+f()= .
查看答案和解析>>
科目:初中数学 来源:2012-2013学年江苏省徐州市中考模拟数学试卷(B卷)(解析版) 题型:填空题
如果记y==f(x),并且f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()==;那么f(1)+f(2)+f()+f(3)+f()+…+f(2013)+f()= .
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(山东泰安卷)数学解析版 题型:解答题
数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连结EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵________________________________
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)
(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn= °时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com