【题目】如图,在平面直角坐标系xOy中,双曲线y=(k≠0)与直线y=ax+b(a≠0)交于A,B两点,直线AB分别交x轴,y轴于C、D两点,若OA=OC,A点坐标为(4,3).
(1)分别求出双曲线与直线的函数表达式;
(2)若P为双曲线上一点,且横坐标为2,H为直线AB上一点,且PH+HC最小,延长PH交x轴于点E,将线段OE沿x轴平移得线段O'E',在平移过程中,是否存在某个位置使|BO'﹣AE'|的值最大值,求出最大值并求出此时E点坐标.
(3)在(2)的情况下,将直线OA沿线段CE平移,平移过程中交y=(x>0)的图象于M(M与点A不重合)交x轴于点N,在平面内找一点G,使M、N,E,G为顶点的四边形为矩形?直接写出G的坐标.
【答案】(1);(2)最大值为,点E(2,0);(3)G(﹣6,6)
【解析】
(1)由OA=OC,A点坐标为(4,3)可求出C点的坐标,再双曲线与直线的函数表达式即可;
(2)作PK⊥x轴于K,交AC于H,得到=,求得HK=CH,可得E(2,0),再作B关于x轴的对称点B',B'N∥OE,B'N=OE,连接AN交x轴于E',截取E'O'=OE,则B'N∥E'O',B'N=E'O',得到|BO'﹣AE'|=|E'N'﹣AE'|=AE'﹣E'N=AN,再求最大值即可;
(3)设平移后的解析式为y=x+b,当直线经过点P(2,6)时,可得矩形MEGN,再求点G坐标即可.
解:
(1)∵OA=OC,A点坐标为(4,3),
∴OC=5,
∴C(﹣5,0),
将点A(4,3)代入y=可得k=12,
∴y=,
将点A(4,3)和C(﹣5,0)代入y=ax+b,可得a=,b=,
∴y=x+;
(2)由已知可得,P(2,6),D(0,),作PK⊥x轴于K,交AC于H,
∵HK∥OD,
∴=,
∴CD===
,
∴=,
∴HK=CH,
∴PH+CH=PH+HK=PK,此时PH+HC为最小,
∴E与K重合,
∴E(2,0),
如图1中,作B关于x轴的对称点B',B'N∥OE,B'N=OE,连接AN交x轴于E',
截取E'O'=OE,则B'N∥E'O',B'N=E'O',
∴四边形B'O'E'N是平行四边形,
∴NE'=O'B'=O'B,
∴|BO'﹣AE'|=|E'N'﹣AE'|=AE'﹣E'N=AN,最大;
∵B(﹣9,﹣),
∴B'(﹣9,),
∴N(﹣7,),
∴AN==,
∴|BO'﹣AE'|的最大值为,点E(2,0).
(3)如图3中,
∵直线OA的解析式为y=x,
∴平移后的解析式为y=x+b,
当直线经过点P(2,6)时,可得矩形MEGN,
∴6=+b,
∴b=,
∴平移后的直线的解析式为y=x+,
令y=0,可得x=﹣6,
∴G(﹣6,6).
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.
(1)求证:△DPF为等腰直角三角形;
(2)若点P的运动时间t秒.
①当t为何值时,点E恰好为AC的一个三等分点;
②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中,AB⊥BC,点O是AC的中点,连接OB,过C点作CD⊥OB,交BO的延长线于垂足D,BC=8,sinα=.
求:(1)线段OC的长;
(2)cos∠DOC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax+bx-4(a,b是常数.且a0)的图象过点(3,-1).
(1)试判断点(2,2-2a)是否也在该函数的图象上,并说明理由.
(2)若该二次函数的图象与x轴只有一个交点,求该函数表达式.
(3)已知二次函数的图像过(,)和(,)两点,且当<时,始终都有>,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家为迎接“10周年购物狂欢节”,准备将编号为l号,2号,…,60号的奖券分别对应60份奖品.现将奖券不均匀分配放置在,,三个抽奖盒中,若将盒中的26号奖券调换到盒,将盒中的44号奖券调换到盒,此时,、两盒奖券的编号平均数比调换前增加了0.6,盒奖券的编号平均数比调换前增加了0.9,同时经计算发现,盒中编号平均数调换前低于36,调换后编号平均数却高于36,则调换前盒中有_________张奖券.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com