精英家教网 > 初中数学 > 题目详情
如图所示,在直角坐标系中,矩形ABCD的顶点A(1,0),对角线的交点P(
5
2
,1)
(1)写出B、C、D三点的坐标;
(2)若在线段AB上有一点E(3,0),过E点的直线将矩形ABCD的面积分为相等的两部分,求直线的解析式;
(3)若过C点的直线l将矩形ABCD的面积分为4:3两部分,并与y轴交于点M,求M点的坐标.
(1)∵四边形ABCD是矩形,顶点A(1,0),对角线的交点P(
5
2
,1),
1+xC
2
=
5
2
,yD=2,
∴C点坐标为(4,2),B点坐标为(4,0),D点坐标为(1,2);

(2)设直线解析式为y=kx+b,
∵过E点的直线将矩形ABCD的面积分为相等的两部分,
∴该直线经过点P(
5
2
,1),
由题意得
5
2
k+b=1
3k+b=0

解得k=-2,b=6,
∴直线解析式为y=-2x+6;

(3)由题意知,矩形ABCD的面积为6,如图1
∵过C点的直线l将矩形ABCD的面积分为4:3两部分,
∴S△CDN=
1
2
DC•DN=
1
2
×3×DN=
3
7
×6,
∴DN=
12
7

∴N点坐标为(1,
2
7
),
∴直线经过N点和C点,
设经过AD边的直线解析式为y=mx+n,
由题意得
4m+n=2
m+n=
2
7

解得m=
4
7
,n=-
2
7

∴直线与y轴交点M的坐标为(0,-
2
7
);


过C点的直线l将矩形ABCD的面积分为4:3两部分,如图2
∴S△CBN=
1
2
BC•BN=
1
2
×2×BN=
3
7
×6,
解得BN=
18
7

∴AN=
3
7

∴N点坐标为(
10
7
,0),
设经过AB边的直线解析式为y=ax+b,
由题意得
4a+b=2
10
7
a+b=0

解得a=
7
9
,b=-
10
9

∴直线与y轴交点M的坐标为(0,-
10
9
);
综上所述M点坐标为(0,-
2
7
)或(0,-
10
9
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

平面直角坐标系内有两条直线l1、l2,直线l1的解析式为y=-
2
3
x+1,如果将坐标纸折叠,使直线l1与l2重合,此时点(-2,0)与点(0,2)也重合.
(1)求直线l2的解析式;
(2)设直线l1与l2相交于点M,问:是否存在这样的直线l:y=x+t,使得如果将坐标纸沿直线l折叠,点M恰好落在x轴上若存在,求出直线l的解析式;若不存在,请说明理由;
(3)设直线l2与x轴的交点为A,与y轴的交点为B,以点C(0,
2
3
)为圆心,CA的长为半径作圆,过点B任作一条直线(不与y轴重合),与⊙C相交于D、E两点(点D在点E的下方)
①在如图所示的直角坐标系中画出图形;
②设OD=x,△BOD的面积为S1,△BEC的面积为S2
S1
S2
=y
,求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知:△ABC的三个顶点的坐标分别是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直线的函数解析式;
(2)在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,请求出这个正方形四个顶眯的坐标,并在图中画出这个正方形;
(3)连接OC,在线段OC上任取一点P,过P作与x轴、y轴的不行线与OA、OB分别交于M、N两点,过M作OB边的垂线与OB交于H;你有什么发现?请写出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,点P(x,y)在第一象限,且点P(x,y)在直线l:x+y=12的图象上,点A(10,0)在x轴上,设△OPA的面积为S.
(1)求S关于x的关系式,并确定x的取值范围;
(2)画出S关于x的函数图象;
(3)在直线l上是否存在点M使△OAM是等腰三角形?若存在,求出点M的个数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知y=
x-8
+
8-x
+18,求代数式
x
-
y
的值.
(2)已知y-2与x成正比例,当x=3时,y=1,求y与x的函数表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图所示,直线l的解析式为y=
3
4
x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某学校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌.如果购买3张两人学习桌,1张三人学习桌需440元;如果购买2张两人学习桌,3张三人学习桌需620元.
(1)求两人学习桌和三人学习桌的单价;
(2)学校欲投入资金不超过12000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W元,求出W与x的函数关系式;
(3)请求出(2)中所有的购买方案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入(城区与入口的距离忽略不计),并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,已知甲车以90千米/时的速度匀速行驶.两车之间的距离s(千米)与行驶时间x(小时)之间的关系如图.
给出下列结论:
①A、B两城相距300千米
②乙车与甲车相遇之前速度为60千米/时
③C点的横坐标为
10
3

④两车相遇时距离A城180千米
⑤乙车与甲车相遇后,速度改为90千米/时
以上结论中正确的是______(填序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
1
2
x
+b交折线OAB于点E.记△ODE的面积为S,求S与b的函数关系式.

查看答案和解析>>

同步练习册答案