精英家教网 > 初中数学 > 题目详情
19.如图,过∠AOB边OB上一点C作OA的平行线,以C为顶点的角与∠AOB的关系是(  )
A.相等B.互补C.相等或互补D.不能确定

分析 先根据题意过∠AOB边OB上一点C作OA的平行线CD,然后根据两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补和对顶角相等即可解答.

解答 解:过∠AOB边OB上一点C作OA的平行线CD,如图所示,

以C为顶点的角有∠1,∠2,∠3,∠4,4个,
∵OA∥CD,
∴∠AOB=∠1,∠AOB=∠4,∠AOB+∠3=180°,
∵∠2=∠3,
∴∠AOB+∠2=180°,
∴以C为顶点的角与∠AOB的关系是相等或互补,
故选C.

点评 此题考查了平行线的性质,解题的关键是:正确的作图,然后利用根据两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补和对顶角相等即可解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中放置一顶点为A,B,O的直角三角形,将此三角形绕原点O顺时针旋转90°得到△A1B1O.抛物线y=-x2+x+2经过A,B,B1三点.
(1)求直线A1B1的解析式;
(2)设点C是在抛物线上第一象限内的一点,△COB1的面积是△ABO面积的2倍,求C点坐标;
(3)线段AB上是否存在一点P,使以点P,A1,B为顶点的三角形与△ABO相似?若存在,请求出$\frac{{A}_{1}P}{OA}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知在二次函数y=$\frac{1}{3}$x2+$\frac{2}{3}$x-$\frac{11}{3}$中,自变量x的取值范围和函数值y的取值范围相同,即a≤x≤b且a≤y≤b,求a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在直角坐标系中,半径为$\sqrt{5}$,圆心为M的⊙M经过A,B,C三点,已知点M的纵坐标为-1,点C的坐标为(0,3),OA:OB=1:3,⊙M与y轴交于点D
(1)求A,B,D,M的坐标
(2)若点E是过A,B,C三点的抛物线的顶点,求证:△BCE是直角三角形;
(3)设∠CBE=β,求sin(45°-β)的值;
(4)探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形与三角形BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)$\sqrt{32}$-2(5$\sqrt{2}$-$\sqrt{18}$);
(2)$\sqrt{48}$-$\sqrt{54}$÷$\sqrt{2}$+(3-$\sqrt{3}$)(3+$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:

(1)小明家到学校的路程是多少米?
(2)小明在书店停留了多少分钟?
(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?
(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如果$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$是方程组$\left\{\begin{array}{l}{ax+by=0}\\{bx-cy=1}\end{array}\right.$的解,那么,下列各式中成立的是(  )
A.a+4c=2B.4a+c=2C.a+4c+2=0D.4a+c+2=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:$\frac{4{a}^{3}-a{b}^{2}}{4{a}^{3}-4{a}^{2}b+a{b}^{2}}$,其中a=0.5,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)如图,已知∠1=∠2,求证:a∥b.
(2)已知直线a∥b,求证:∠1=∠2.

查看答案和解析>>

同步练习册答案