8£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßT£ºy=ax2+bx+c£¨a¡Ù0£©ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚxÖáµÄÕý°ëÖáÉÏ£©£¬ÓëyÖá½»ÓÚµãC£¬¾ØÐÎDEFGµÄÒ»Ìõ±ßDEÔÚÏ߶ÎABÉÏ£¬¶¥µãF¡¢G·Ö±ðÔÚÏ߶ÎBC¡¢ACÉÏ£¬Å×ÎïÏßTÉϲ¿·ÖµãµÄºá×ø±ê¶ÔÓ¦µÄ×Ý×ø±êÈçÏ£º
x¡­-3-2  12¡­
y¡­-$\frac{5}{2}$-4-$\frac{5}{2}$0¡­
£¨1£©Ð´³öA¡¢B¡¢CÈýµãµÄ×ø±ê£»
£¨2£©ÈôµãDµÄ×ø±êΪ£¨m£¬0£©£¬¾ØÐÎDEFGµÄÃæ»ýΪS£¬ÇóSÓëmµÄº¯Êý¹Øϵ£¬²¢Ö¸³ömµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±¾ØÐÎDEFGµÄÃæ»ýSÈ¡×î´óÖµmʱ
¢ÙÅ×ÎïÏßTÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹S¡÷PBC=m£¿Èô´æÔÚ£¬ÇëÇó³öPµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¢ÚÁ¬½ÓDF²¢ÑÓ³¤ÖÁµãM£¬Ê¹FM=k•DF£¬ÈôµãM²»ÔÚÅ×ÎïÏßTÉÏ£¬ÇókµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ýͼ±í¿ÉÒԵõ½£¬Å×ÎïÏß¾­¹ýµÄËĵãµÄ×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬°ÑÆäÖÐÈýµãµÄ×ø±ê´úÈëy=ax2+bx+c£¨a¡Ù0£©¾Í¿ÉÒÔ½âµÃº¯ÊýµÄ½âÎöʽ£®½ø¶ø¾Í¿ÉÒÔÇó³öA¡¢B¡¢CµÄ×ø±ê£®
£¨2£©Ò×Ö¤¡÷ADG¡×¡÷AOC£¬AD=2-m£¬¸ù¾ÝÏàËÆÈý½ÇÐεĶÔÓ¦±ßµÄ±ÈÏàµÈ£¬¾Í¿ÉÒÔÓÃm±íʾ³öDGµÄ³¤£¬ÔÙ¸ù¾Ý¡÷BEF¡×¡÷BOC£¬¾Í¿ÉÒÔ±íʾ³öBE£¬¾Í¿ÉÒԵõ½OE£¬Òò¶øED¾Í¿ÉÒÔ±íʾ³öÀ´£®Òò¶øSÓëmµÄº¯Êý¹Øϵ¾Í¿ÉÒԵõ½£®
£¨3£©µ±¾ØÐÎDEFGµÄÃæ»ýSÈ¡×î´óֵʱ£¬¾ÍÊǺ¯ÊýµÄÖµÊÇ×î´óֵʱ£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖʾͿÉÒÔÇó³öÏàÓ¦µÄmµÄÖµ£®
¢Ù¸ù¾ÝS¡÷PBC=m=1µÃµ½Pµ½BCµÄ¾àÀëΪ$\frac{\sqrt{2}}{4}$£¬¿ÉÒԵõ½Æ½ÐÐÓÚBCÇÒµ½BCµÄ¾àÀëΪ$\frac{\sqrt{2}}{4}$µÄ½âÎöʽ£¬ÔÙÁªÁ¢Å×ÎïÏß½âÎöʽ¼´¿ÉµÃµ½Pµã×ø±ê£»
¢Ú¾ØÐεÄËĸö¶¥µãµÄ×ø±ê¾Í¿ÉÒÔÇó³ö£¬¸ù¾Ý´ý¶¨ÏµÊý·¨¾Í¿ÉÒÔÇó³öÖ±ÏßDFµÄ½âÎöʽ£®¾Í¿ÉÒÔÇó³öÖ±ÏßDFÓëÅ×ÎïÏߵĽ»µãµÄ×ø±ê£¬¸ù¾ÝFM=k•DF£¬¾Í¿ÉÒÔ±íʾ³öMµÄ×ø±ê£¬°ÑMµÄ×ø±ê´úÈ뺯Êý¾Í¿ÉÒԵõ½Ò»¸ö¹ØÓÚkµÄ·½³Ì£¬Çó³ökµÄÖµ£¬ÅжÏÊÇ·ñÂú×㺯ÊýµÄ½âÎöʽ£®

½â´ð ½â£º£¨1£©½â·¨Ò»£ºÉèy=ax2+bx+c£¨a¡Ù0£©£¬
ÈÎÈ¡x£¬yµÄÈý×éÖµ´úÈ룬Çó³ö½âÎöʽy=$\frac{1}{2}$x2+x-4£¬
Áîy=0£¬Çó³öx1=-4£¬x2=2£»
Áîx=0£¬µÃy=-4£¬
¡àA¡¢B¡¢CÈýµãµÄ×ø±ê·Ö±ðÊÇA£¨2£¬0£©£¬B£¨-4£¬0£©£¬C£¨0£¬-4£©£®
½â·¨¶þ£ºÓÉÅ×ÎïÏßP¹ýµã£¨1£¬-$\frac{5}{2}$£©£¬£¨-3£¬-$\frac{5}{2}$£©¿ÉÖª£¬
Å×ÎïÏßPµÄ¶Ô³ÆÖá·½³ÌΪx=-1£¬
ÓÖ¡ßÅ×ÎïÏßP¹ý£¨2£¬0£©¡¢£¨-2£¬-4£©£¬
¡àÓÉÅ×ÎïÏߵĶԳÆÐÔ¿ÉÖª£¬
µãA¡¢B¡¢CµÄ×ø±ê·Ö±ðΪA£¨2£¬0£©£¬B£¨-4£¬0£©£¬C£¨0£¬-4£©£®

£¨2£©ÓÉÌâÒ⣬$\frac{AD}{AO}$=$\frac{DG}{OC}$£¬¶øAO=2£¬OC=4£¬AD=2-m£¬¹ÊDG=4-2m£¬
ÓÖ$\frac{BE}{BO}$=$\frac{EF}{OC}$£¬EF=DG£¬µÃBE=4-2m£¬
¡àDE=3m£¬
¡àSDEFG=DG•DE=£¨4-2m£©3m=12m-6m2£¨0£¼m£¼2£©£®

£¨3£©¡ßSDEFG=12m-6m2£¨0£¼m£¼2£©£¬
¡àm=1ʱ£¬¾ØÐεÄÃæ»ý×î´ó£¬ÇÒ×î´óÃæ»ýÊÇ6£®
¢ÙS¡÷PBC=m=1£¬
Pµ½BCµÄ¾àÀëΪ$\frac{\sqrt{2}}{4}$£¬
ÔòƽÐÐÓÚBCÇÒµ½BCµÄ¾àÀëΪ$\frac{\sqrt{2}}{4}$µÄ½âÎöʽΪy=-x-$\frac{9}{2}$»òy=-x-$\frac{7}{2}$£¬
ÁªÁ¢Å×ÎïÏß½âÎöʽµÃ
$\left\{\begin{array}{l}{y=-x-\frac{9}{2}}\\{y=\frac{1}{2}{x}^{2}+x-4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{1}=-2-\sqrt{3}}\\{{y}_{1}=-\frac{5}{2}+\sqrt{3}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=-2+\sqrt{3}}\\{{y}_{2}=-\frac{5}{2}-\sqrt{3}}\end{array}\right.$£¬
»ò$\left\{\begin{array}{l}{y=-x-\frac{7}{2}}\\{y=\frac{1}{2}{x}^{2}+x-4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{3}=-2-\sqrt{5}}\\{{y}_{3}=-\frac{3}{2}+\sqrt{5}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{4}=-2+\sqrt{5}}\\{{y}_{4}=-\frac{3}{2}-\sqrt{5}}\end{array}\right.$£®
¹ÊPµã×ø±êΪ£¨-2-$\sqrt{3}$£¬-$\frac{5}{2}$+$\sqrt{3}$£©»ò£¨-2+$\sqrt{3}$£¬-$\frac{5}{2}$-$\sqrt{3}$£©»ò£¨-2-$\sqrt{5}$£¬-$\frac{3}{2}$+$\sqrt{5}$£©£¨-2+$\sqrt{5}$£¬-$\frac{3}{2}$-$\sqrt{5}$£©£»
¢Úµ±¾ØÐÎÃæ»ý×î´óʱ£¬Æ䶥µãΪD£¨1£¬0£©£¬G£¨1£¬-2£©£¬F£¨-2£¬-2£©£¬E£¨-2£¬0£©£¬
ÉèÖ±ÏßDFµÄ½âÎöʽΪy=kx+b£¬Ò×Öªk=$\frac{2}{3}$£¬b=-$\frac{2}{3}$£¬
¡ày=$\frac{2}{3}$x-$\frac{2}{3}$£¬
ÓÖ¿ÉÇóµÃÅ×ÎïÏßPµÄ½âÎöʽΪ£ºy=$\frac{1}{2}$x2+x-4£¬
Áî$\frac{2}{3}$x-$\frac{2}{3}$=$\frac{1}{2}$x2+x-4£¬¿ÉÇó³öx=$\frac{-1¡À\sqrt{61}}{3}$£®
Èçͼ£¬ÉèÉäÏßDFÓëÅ×ÎïÏßPÏཻÓÚµãN£¬ÔòNµÄºá×ø±êΪ$\frac{-1-\sqrt{61}}{3}$£¬¹ýN×÷xÖáµÄ´¹Ïß½»xÖáÓÚH£¬
ÓÐ$\frac{FN}{DF}$=$\frac{HE}{DE}$=$\frac{-2-\frac{-1-\sqrt{61}}{3}}{3}$=$\frac{-5+\sqrt{61}}{9}$£¬
µãM²»ÔÚÅ×ÎïÏßPÉÏ£¬¼´µãM²»ÓëNÖغÏʱ£¬´ËʱkµÄÈ¡Öµ·¶Î§ÊÇk¡Ù$\frac{\sqrt{61}-5}{9}$ÇÒk£¾0£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬Éæ¼°´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÀûÓú¯ÊýµÄ½âÎöʽ×é³ÉµÄ·½³Ì×éÇóº¯Êý½»µã×ø±êµÄ·½·¨£¬ÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÊýÖáÉÏA¡¢BÁ½µã·Ö±ð±íʾÊý-1ºÍ$\sqrt{5}$£¬µãCÓëµãB¹ØÓÚµãA¶Ô³Æ£¬µãDÓëµãC¹ØÓÚÔ­µã¶Ô³Æ£¬ÔòµãD±íʾµÄÊýΪ2+$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=BC£¬BCÓëyÖá½»ÓÚDµã£¬µãCµÄ×ø±êΪ£¨-1£¬0£©£¬µãAµÄ×ø±êΪ£¨-5£¬2£©£¬ÔòDµãµÄ×ø±êÊÇ£¨0£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ²â£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¡ÏBAC=90¡ã£¬Ö±½ÇEPFµÄ¶¥µãPÊÇBCµÄÖе㣬Á½±ßPE£¬PF·Ö±ð½»AB£¬ACÓÚµãE£¬F
£¨1£©ÇóÖ¤£ºAC=AF+AE£»
£¨2£©Ì½Ë÷¡÷EPFÊÇ·ñΪµÈÑüÖ±½ÇÈý½ÇÐΣ»
£¨3£©ÈôAP=2£¬ÇóSËıßÐÎAEPF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èçͼ£¬Ò»Ö»ÂìÒÏÒÔ¾ùÔȵÄËÙ¶ÈÑØ̨½×A¡úB¡úC¡úD¡úEÅÀÐУ¬ÄÇôÂìÒÏÅÀÐеĸ߶ÈhÓëʱ¼ätµÄº¯ÊýͼÏó´óÖÂÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©$\sqrt{48}¡Â\sqrt{3}-\sqrt{\frac{1}{2}}¡Á\sqrt{12}+\sqrt{24}$£®
£¨2£©£¨$\sqrt{32}+\sqrt{0.5}$£©-£¨2$\sqrt{\frac{1}{8}}-\sqrt{75}$£©£®
£¨3£©£¨5$\sqrt{15}$+$\sqrt{\frac{3}{5}}$£©¡Â$\sqrt{15}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬DÊǵÈÑüÖ±½Ç¡÷ABCÄÚÒ»µã£¬BCÊÇб±ß£¬Èç¹û½«¡÷ABDÈƵãAÄæʱÕë·½ÏòÐýתµ½¡÷ACD µÄλÖã¨BÓëCÖغϣ¬DÓëD¡äÖغϣ©£¬Ôò¡ÏADD¡äµÄ¶ÈÊýÊÇ£¨¡¡¡¡£©
A£®25¡ãB£®30¡ãC£®35¡ãD£®45¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ABÊÇ¡ÑOÖ±¾¶£¬OC¡ÍAB£¬ÏÒCDÓëOB½»ÓÚµãF£¬¹ýµãD¡¢A·Ö±ð×÷¡ÑOµÄÇÐÏß½»ÓÚµãG£¬ÇÐÏßGDÓëABÑÓ³¤Ïß½»ÓÚµãE£®
£¨1£©ÇóÖ¤£ºEF=ED£»
£¨2£©ÈôAG=3$\sqrt{3}$£¬¡ÑOµÄ°ë¾¶Îª3£¬ÇóOFµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2016-2017ѧÄêÕã½­Ê¡Èð°²ÊÐÎåУÁª¿¼°ËÄ꼶ÏÂѧÆÚµÚÒ»´ÎÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡ £©

A. £½ B. C. D.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸