精英家教网 > 初中数学 > 题目详情

图中的四个小三角形都是等边三角形,边长为2cm,能通过平移△ABC得到其它三角形吗?若能,请画出平移的方向,并说出平移的距离.

答案:略
解析:

FAE能由△ABC平移得到,平移方向为AF的方向,平移距离是AF的长度.△ECD能由△ABC平移得到,平移方向为BC的方向,平移距离是BC的长度.


提示:

根据△ABC和其它三个三角形的位置确定是否能通过平移得到.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:
(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为SN
①若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式.(不必证明)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•庆元县模拟)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为
1
2
ab+(a-b)2
由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.

(2)试用勾股定理解决以下问题:
如果直角三角形ABC的两直角边长为3和4,则斜边上的高为
12
5
12
5

(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格中,并标出字母a、b所表示的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

教材第66页探索平方差公式时设置了如下情境:边长为b的小正方形纸片放置在边长为a的大正方形纸片上(如图①),你能通过计算未盖住部分的面积得到公式(a+b)(a-b)=a2-b2吗?(不必证明)

(1)如果将小正方形的一边延长(如图②),是否也能推导公式?请完成证明.
(2)面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图③,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×
12
ab+(a-b)2,由此推导出重要的勾股定理:a2+b2=c2.图④为美国第二十任总统伽菲尔德的“总统证法”,请你完成证明.
(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格(图⑤)中,并标出字母a、b所表示的线段.

查看答案和解析>>

同步练习册答案