精英家教网 > 初中数学 > 题目详情
53、比较下列各组中算式结果的大小:
(1)42+32
2×4×3;
(2)(-2)2+12
2×(-2)×1;
(3)22+22
=
2×2×2.
通过观察,归纳比较20062+20072
2×2006×2007,并写出能反映这种规律的一般结论
a2+b2≥2ab
分析:左边式子减右边式子所得的差等于左边两数差的平方,如果不等于零,则左边式子>右边式子;如果等于0,则两式子相等.
解答:解:(1)∵42+32-2×4×3=(4-3)2>0,
∴42+32>2×4×3;

(2)∵(-2)2+12-2×(-2)×1=(-2-1)2>0,
∴(-2)2+12>2×(-2)×1

(3)∵22+22-2×2×2=(2-2)2=0,
∴22+22=2×2×2.
∵20062+20072-2×2006×2007=(2006-2007)2>0,
∴20062+20072>2×2006×2007.
点评:判断两式子大小,可利用两式子的差,而本题两式子之差刚好为左边式子两数差的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、你能比较20082007与20072008的大小吗?
为了解决这个问题,我们首先写出它的一般形式,即比较nn+1与(n+1)n的大小(n是正整数),然后我们从分析n=1,n=2,n=3…中发现规律,经归纳、猜想得出结论
(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”“<”)
①12
21,②23
32;③34
43;④45
54;⑤56
65
(2)从第(1)题的结果中,经过归纳,可以猜想出nn+1与(n+1)n的大小关系是
当n=1或n=2时nn+1<(n+1)n;当n≥3时nn+1>(n+1)n

(3)根据以上归纳,猜想得到的一般结论,试比较下列两数的大小:20082007与20072008

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:能比较两个数20092010和20102009的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般彤式,即比较nn+1与(n+1)n的大小(n是正整数),然后,我们从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”“=”或“<”).
①12
21
②23
32
③34
43
④45
54
⑤56
65
(2)从第(1)题的结果经过归纳,可猜想出nn+1与(n+1)n的大小关系是
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n

(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:20092010
20102009

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

比较下列各组中算式结果的大小:
(1)42+32______2×4×3;
(2)(-2)2+12______2×(-2)×1;
(3)22+22______2×2×2.
通过观察,归纳比较20062+20072______2×2006×2007,并写出能反映这种规律的一般结论______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

比较下列各组中算式结果的大小:
(1)42+32______2×4×3;
(2)(-2)2+12______2×(-2)×1;
(3)22+22______2×2×2.
通过观察,归纳比较20062+20072______2×2006×2007,并写出能反映这种规律的一般结论______.

查看答案和解析>>

同步练习册答案