精英家教网 > 初中数学 > 题目详情
8.已知:x、y满足|x+2y+3|+(2x+y)2=0,则x-y=(  )
A.7B.5C.3D.1

分析 根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.

解答 解:由题意得,x+2y+3=0,2x+y=0,
解得,x=1,y=-2,
则x-y=3,
故选C.

点评 本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限且在直线y=$\frac{4}{3}$x上,点B为线段OA的中点,过点A作y轴的垂线,点D是线段AC的延长线上的一点,连接BD.若∠OBD=3∠D,且CD=5,则直线BD的解析式为y=-$\frac{1}{2}$x+$\frac{11}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1与∠2互补,判断HF与AB是否垂直,并说明理由(填空).
解:垂直.理由如下:
∵DE⊥AC,AC⊥BC,
∴∠AED=∠ACB=90°(①在同一平面内,垂直于同一直线的两条直线互相平行).
∴DE∥BC(②同位角相等,两直线平行)
∴∠1=∠DCB(③两直线平行,内错角相等)
∵∠1与∠2互补(已知).
∴∠DCB与∠2互补
∴DC∥FH(④同旁内角互补,两直线平行)
∴∠BFH=∠CDB(⑤两直线平行,同位角相等)
∵CD⊥AB,
∴∠CDB=90°.
∴∠BFH=90°(⑥等量代换).
∴HF⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某厂举办职工技能大赛,甲、乙两个车间各派5名选手参加,他们的分数见图表:
 1号2号3号4号5号
甲车间75808585100
乙车间70100x7580
根据图标信息,解答问题:
(1)x=100,补全条形统计图;
(2)甲车间5名选手的平均分为85,乙车间5名选手的平均分为85;
(3)分别求甲、乙两车间5名选手成绩的方差;判断哪个车间选手的成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图1,计算下面圆柱的表面积、体积   (单位:厘米)
(2)如图2,计算下面圆锥体的体积 (单位:厘米)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.外心在三角形的一边上的三角形形状一定为(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:(2x2-xy)-3(xy-x2),其中x=-2,y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.
证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB
∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB
∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.
类比:
若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.
拓展:(直接回答问题结果,不要求写结论过程)
若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:
①图3中的线段AE、CD是否仍然相等?
②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.以下命题为真命题的是(  )
A.相等的角是对顶角B.两直线平行,同旁内角互补
C.若a2=b2,则a=bD.若a2+b2>0,则a>0,b>0

查看答案和解析>>

同步练习册答案