精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,ADBC,∠ABC=AB=8,AD=3,BC=4,点PAB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是(  )

A. 1

B. 2

C. 3

D. 4

【答案】C

【解析】试题分析:由于∠PAD=∠PBC=90°,故要使△PAD△PBC相似,分两种情况讨论:①△APD∽△BPC②△APD∽△BCP,这两种情况都可以根据相似三角形对应边的比相等求出AP的长,即可得到P点的个数.

解:∵AB⊥BC

∴∠B=90°

∵AD∥BC

∴∠A=180°﹣∠B=90°

∴∠PAD=∠PBC=90°AB=8AD=3BC=4

AP的长为x,则BP长为8﹣x

AB边上存在P点,使△PAD△PBC相似,那么分两种情况:

△APD∽△BPC,则APBP=ADBC,即x:(8﹣x=34,解得x=

△APD∽△BCP,则APBC=ADBP,即x4=3:(8﹣x),解得x=2x=6

满足条件的点P的个数是3个,

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 P(﹣2,﹣3)向右平移 2 个单位,再向上平移 4 个单位,则所得到的点的坐标为(

A. (﹣2,0) B. (0,﹣2) C. (1,0) D. (0,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:m-2n=5-c, 则代数式6n -3m-3c-5 的值是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若函数y=(m2-3m+2)x|m|-3是反比例函数,则m的值是( )
A.1
B.-2
C.±2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016·毕节中考)如图,已知△ABC中,ABAC,把△ABCA点沿顺时针方向旋转得到△ADE,连接BDCE交于点F.

(1)求证:△AEC≌△ADB

(2)AB2BAC45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列成语描述的事件为随机事件的是(
A.水涨船高
B.守株待兔
C.水中捞月
D.缘木求鱼

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

1)求证:PC⊙O的切线;

2)点M是弧AB的中点,CMAB于点N,若AB=4,求MN·MC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线,点分别在直线上,点为平面内一点.

)如图,的数量关系是__________.

)利用()的结论解决问题:如图,已知平分平分,求得度数.

)如图,点上一点,于点,直接写出之间的数量关系.(用含的式子表示)

查看答案和解析>>

同步练习册答案