精英家教网 > 初中数学 > 题目详情

【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.

(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.

【答案】
(1)解:AP=BQ.

理由:∵四边形ABCD是正方形,

∴AB=BC,∠ABC=∠C=90°,

∴∠ABQ+∠CBQ=90°.

∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.

在△PBA和△QCB中,

∴△PBA≌△QCB,

∴AP=BQ


(2)解:过点Q作QH⊥AB于H,如图.

∵四边形ABCD是正方形,

∴QH=BC=AB=3.

∵BP=2PC,

∴BP=2,PC=1,

∴BQ=AP= = =

∴BH= = =2.

∵四边形ABCD是正方形,

∴DC∥AB,

∴∠CQB=∠QBA.

由折叠可得∠C′QB=∠CQB,

∴∠QBA=∠C′QB,

∴MQ=MB.

设QM=x,则有MB=x,MH=x﹣2.

在Rt△MHQ中,

根据勾股定理可得x2=(x﹣2)2+32

解得x=

∴QM的长为


(3)解:过点Q作QH⊥AB于H,如图.

∵四边形ABCD是正方形,BP=m,PC=n,

∴QH=BC=AB=m+n.

∴BQ2=AP2=AB2+PB2

∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2

∴BH=PB=m.

设QM=x,则有MB=QM=x,MH=x﹣m.

在Rt△MHQ中,

根据勾股定理可得x2=(x﹣m)2+(m+n)2

解得x=m+n+

∴AM=MB﹣AB=m+n+ ﹣m﹣n=

∴AM的长为


【解析】(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,由同角的余角相等得出∠PAB=∠CBQ.进而利用ASA得出△PBA≌△QCB,,由全等三角形对应边相等得出结论;
(2)过点Q作QH⊥AB于H,由正方形的性质得出QH=BC=AB=3.结合已知 条件得出BP=2,PC=1,进而根据勾股定理求出BH的长,再由折叠的性质得到∠C′QB=∠CQB,从而得到MQ=MB,设QM=x,则有MB=x,MH=x﹣2,在Rt△MHQ中,根据勾股定理得出方程,解方程得到x的值,即可;
(3)过点Q作QH⊥AB于H,由正方形的性质得出QH=BC=AB=m+n,结合已知 条件得出BP=m,PC=n,进而根据勾股定理求出BH的长,再由折叠的性质得到∠C′QB=∠CQB,从而得到MQ=MB,设QM=x,则有MB=x,MH=x﹣m,在Rt△MHQ中,根据勾股定理得出方程,解方程得到x的值,即可;

【考点精析】利用勾股定理的概念和正方形的性质对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果4x2﹣ax+9是一个完全平方式,则a的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a是一64的立方根,b的算术平方根为2.

(1)写出ab的值;

(2)3ba的平方根,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以A(0, )为圆心的圆与x轴相切于坐标原点O,与y轴相交于点B,弦BD的延长线交x轴的负半轴于点E,且∠BEO=60°,AD的延长线交x轴于点C

(1)分别求点EC的坐标;

(2)求经过AC两点,且以过E而平行于y轴的直线为对称轴的抛物线的函数解析式;

(3)设抛物线的对称轴与AC的交点为M,试判断以M点为圆心,ME为半径的圆与⊙A的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式由左到右的变形中,属于因式分解的是( )

A. a(m+n)= am+an B. a2﹣b2﹣c2 =(a﹣b)(a+b)﹣c2

C. 10x2﹣5x = 5x(2x﹣1) D. x2﹣16+6x =(x+4)(x﹣4)+ 6x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).

(1)A点所表示的实际意义是 =
(2)求出AB所在直线的函数关系式;
(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中任意一点p(xy)经平移后对应点为p1(x+5y+3),将ABC作同样的平移得到A1B1C1.

1)画出A1B1C1

2)求A1,B1,C1的坐标;

3)写出平移的过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示(
A.支出20元
B.收入20元
C.支出80元
D.收入80元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2014年,我国国内生产总值约为636000亿元,用科学记数法表示2014年国内生产总值约为亿元.

查看答案和解析>>

同步练习册答案