精英家教网 > 初中数学 > 题目详情
对于代数式“
a-1
a+1
-
a
a2+2a+1
÷
1
2a+2
”,小明、小颖把a分别用
2
和1-
2
代入计算,两人的计算都正确,得到的答案也相同.你能解释其中的道理吗?
分析:先根据分式混合运算的法则把原式进行化简,再根据原式化简结果为定值进行解答即可.
解答:解:∵原式=
a-1
a+1
-
a
(a+1)2
×2(a+1)
=
a-1
a+1
-
2a
a+1

=
-1-a
a+1

=-1.
∴无论a=
2
还是a=1-
2
原式的值都不会改变.
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
精英家教网
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
1
3
∠AOB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2+2k-
5
4
=0 ①.
(1)求证:对于任意实数k,方程①总有两个不相等的实数根;
(2)如果a是关于y的方程y2-(x1-k-
1
2
)y
+(x1-k)(x2-k)+
1
4
=0 ②的根,其中x1、x2为方程①的两个实数根,且x1<x2,求代数式(
1
a
-
a
a+1
4
a+1
•(a2-1)
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的方程x2-2(k+1)x+k2+2k-
5
4
=0 ①.
(1)求证:对于任意实数k,方程①总有两个不相等的实数根;
(2)如果a是关于y的方程y2-(x1-k-
1
2
)y
+(x1-k)(x2-k)+
1
4
=0 ②的根,其中x1、x2为方程①的两个实数根,且x1<x2,求代数式(
1
a
-
a
a+1
4
a+1
•(a2-1)
的值.

查看答案和解析>>

同步练习册答案