精英家教网 > 初中数学 > 题目详情
精英家教网如图,如果正方形OEFG的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD,OEFG的边长都是acm,则图形中重合的部分的面积是
 
cm2(用a表示).
分析:根据题意可得:无论正方形ABCD,OEFG位置关系如何,其重合的部分的面积总是等于正方形ABCD面积的
1
4
,从而可求得其面积.
解答:解:根据题意分析可得:无论正方形ABCD,OEFG位置关系如何,因其EO⊥GO,所以其重合的部分的面积不变,总是等于正方形ABCD面积的
1
4
cm2;故其面积为
a2
4
cm2
故答案为
a2
4
点评:本题的解题关键是题中重合的部分的面积是不变总是等于正方形ABCD面积的
1
4
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

附加题
(1)若方程x2-
k-1
x-1=0
有两个不相等的实数根,则k的取值范围
 

(2)已知3-
2
的整数部分是a,小数部分是b,则a+b+
2
b
的值是
 

(3)如图①,已经正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.
①求证:OE=OF.
②如图②,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明,如果不成立,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E.
(1)求四边形CDFP的周长;
(2)请连接OF,OP,求证:OF⊥OP;
(3)延长DC,FP相交于点G,连接OE并延长交直线DC于H(如图乙).是否存在点P使△EFO∽△EHG(其对应关系是E←→E,F←→H,O←→G)?如果存在,试求此时的BP的长;如果不存在,请说精英家教网明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、九(下)“几何回顾”一章中,课本有一习题:如图1,正方形ABCD的对角线AC、BD交于点O,OE=OF.求证:∠ACF=∠DBE.
小敏在完成题目的证明后的总结回顾中,对BE与CF的位置关系进行了探索:
(1)小敏发现:在图1中,CF⊥BE.请你替小敏写出证明过程.
(2)小敏继而猜想:如果E在CA的延长线上,而F在DB或BD的延长线上时,CF⊥BE仍然成立.你认为小敏的这个猜想是否正确?请你分别在图2和图3中,通过作图进行判断,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荆门)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.
(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,正方形ABCD和过其对角线交点O的正方形OEFG的边长相等,OE交AB于M,OG交BC于N.
(1)求证:△AOM≌△BON;
(2)当四边形MONB的面积为1时,求正方形的边长;
(3)在(2)的条件下,如果正方形OEFG绕点O逆时针转动,使顶点E刚好落在CB的延长线上如图2,并过O作OH⊥BC垂足为H,求MB的长.

查看答案和解析>>

同步练习册答案