精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线yx2+m+1xm2m0)与x轴交于AB两点,与y轴交于点C,不论m取何正数,经过ABC三点的⊙P恒过y轴上的一个定点,则该定点的坐标是_____

【答案】(0,1)

【解析】

由题意根据已知条件得到求出OA=2OB=m+2OC=m+2,判断出∠OCB=OAF,根据三角函数的定义即可得到结论.

解:令y0

∴x2+m+1xm20

x1[x+m+2]0

∴x1x=﹣(m+2),

∴A10),B(﹣20),

∴OA1OBm+2

x0

∴y=﹣m2

∴C0,﹣m2),

∴OCm+2

如图,

ABC⊙P上,

∴∠OCB∠OAF

Rt△BOC中,tan∠OCB1

Rt△AOF中,tan∠OAF1

∴OF1

F的坐标为(01);

故答案为:(01).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若关于x的方程(x4)(x26x+m)=0的三个根恰好可以组成某直角三角形的三边长,则m的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,

①写出A、B、C的坐标.

②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD是一块绿化带,其中阴影部分EOFBGHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟不落在花圃上的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO60°OA2B点的坐标为(20),动点M以每秒2个单位长度的速度沿ACB运动(M点不与点A、点B重合),设运动时间为t秒.

1)求经过BCD三点的抛物线解析式;

2)点P在(1)中的抛物线上,当MAC中点时,若PAM≌△PDM,求点P的坐标;

3)当点MCB上运动时,如图(2)过点MMEADMFx轴,垂足分别为EF,设矩形AEMFABC重叠部分面积为S,求St的函数关系式,并求出S的最大值;

4)如图(3)点P在(1)中的抛物线上,QCA延长线上的一点,且PQ两点均在第三象限内,QA是位于直线BP同侧的不同两点,若点Px轴的距离为dQPB的面积为2d,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线G有最低点。

1)求二次函数的最小值(用含m的式子表示);

2)将抛物线G向右平移m个单位得到抛物线G1经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;

3)记(2)所求的函数为H,抛物线G与函数H的图像交于点P,结合图像,求点P的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国共产党第十九次全国代表大会提出了要坚定实施七大战略,某数学兴趣小组从中选取了四大战略进行调查,A:科教兴国战略,B:人才强国战略,C:创新驱动发展战略,D:可持续发展战略,要求被调查的每位学生只能从中选择一个自已最关注的战略,根据调查结果,该小组绘制了如图所示的两幅不完整的统计图,请你根据统计图中提供的信息,解答下列问题:

1)求本次抽样调查的学生人数;

2)求出统计图中mn的值;

3)在扇形统计图中,求战略B所在扇形的圆心角度数;

4)若该校有3000名学生,请估计出选择战略AB共有的学生数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C90°EAB边上一点,DAC边上一点,且点D不与AC重合,EDAC

1)当sinB=时,

①求证:BE2CD.

②当ADE绕点A旋转到如图2的位置时(45°<∠CAD90°).BE2CD是否成立?若成立,请给出证明;若不成立.请说明理由.

2)当sinB=时,将ADE绕点A旋转到∠DEB90°,若AC10AD2,求线段CD的长.

查看答案和解析>>

同步练习册答案