精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AECD=ADCE.
(1)求证:DE∥AB;
(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,联结AF.求证:DF=AF.

【答案】
(1)证明:∵AECD=ADCE,

∵∠DAB=∠B,

∴AD=BD,

∴DE∥AB;


(2)证明:∵BD是DF和AB的比例中项,

∴BD2=DFAB,

∵AD=BD,

∴AD2=DFAB,

∵DE∥AB,

∴∠ADF=∠BAD,

∴△ADF∽△DBA,

=1,

∴DF=AF.


【解析】(1)根据已知条件得到 ,根据等腰三角形的判定定理得到AD=BD,等量代换即可得到结论;(2)由BD是DF和AB的比例中项,得到BD2=DFAB,等量代换得到AD2=DFAB,推出 ,根据相似三角形的性质得到 =1,于是得到结论.
【考点精析】关于本题考查的相似三角形的判定与性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.

(1)如图1,若该抛物线经过原点O,且a=﹣
①求点D的坐标及该抛物线的解析式;
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于(
A.
B.
C.4
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:
方案一:直接锯一个半径最大的圆;
方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;
方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;
方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.

(1)写出方案一中圆的半径;
(2)通过计算说明方案二和方案三中,哪个圆的半径较大?
(3)在方案四中,设CE=x(0<x<1),圆的半径为y.
①求y关于x的函数解析式;
②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.
(1)求证:GF=BF.
(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FOED=ODEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么 的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;
(1)求 的值;
(2)如果 = = ,求向量 ;(用向量 表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.(﹣2)3=8
B. =±2
C. =﹣2
D.|﹣2|=﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了名学生;
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).

查看答案和解析>>

同步练习册答案