精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知正方形ABCD和EFCG,点E、F、G分别在线段AC、BC、CD上,正方形ABCD的边长为6.
(1)如果正方形EFCG的边长为4,求证:△ABE∽△CAG;
(2)正方形EFCG的边长为多少时,tan∠ABE×cot∠CAG=3.
分析:(1)根据正方形的性质可得到各角均为直角,AC,EC的长,从而根据两组对应边的比相等且相应的夹角相等的两个三角形相似求得结论.
(2)设正方形EFCG的边长为x,则BF=6-x,连接FG交AC于点H,从而分别表示GH,AH的长,用未知数分别表示tan∠ABE与cot∠CAG,根据等式可求得求知数的值,即求得正方形EFCG的边长.
解答:(1)证明:∵正方形ABCD边长为6,正方形EFCG边长为4,
∴∠BAC=∠ACG,AB=6,AC=6
2
,CG=4,EC=4
2
.(2分)
∴AE=AC-EC=2
2

AB
AE
=
AC
CG
.(2分)
在△ABE和△CAG中
∠BAC=∠ACG,
AB
AE
=
AC
CG
精英家教网
∴△ABE∽△CAG.(1分)

(2)解:设正方形EFCG的边长为x,则BF=6-x,
连接FG交AC于点H,
可得GH⊥AC,GH=
2
2
x
AH=6
2
-
2
2
x

tan∠CAG=
GH
AH
=
2
2
x
6
2
-
2
2
x
=
x
12-x
,(2分)
∵AB∥EF,
∴∠ABE=∠BEF,
∴tan∠ABE=
BF
EF
=
6-x
x
.(1分)
∵tan∠ABE=3tan∠CAG,
6-x
x
=
3x
12-x
,(1分)
∴x1=-12(舍去),x2=3,
∴当正方形EFCG的边长为3时,tan∠ABE=3tan∠CAG.(1分)
点评:此题主要考查学生对正方形的性质及相似三角形的判定方法的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案