精英家教网 > 初中数学 > 题目详情
(2012•嘉定区二模)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表和图,部分数据缺失).试根据所提供的信息解答下列问题:
表1:抽样分析分类统计表
成绩范围 x<60 60≤x<80 x≥80
成绩等第 不合格 合格 优良
人数 40
平均成绩 57 a b
(1)本次随机抽样调查的样本容量是
80
80

(2)试估计全校所有参赛学生中成绩等第为优良的学生人数;
(3)若本次随机抽样的样本平均数为76.5,又表1中b比a大15,试求出a、b的值;
(4)如果把满足p≤x≤q的x的取值范围记为[p,q],表1中a的取值范围是
D
D

(A)[69.5,79.5](B)[65,74]
(C)[66.5,75.5](D)[66,75].
分析:(1)根据直方图求出成绩合格的频率,再根据成绩合格的人数是40,列式计算即可求出样本容量;
(2)根据频率之和为1求出成绩等第为优良的频率,然后乘以总人数600,计算即可得解;
(3)先求出不合格与成绩优良的人数,然后根据加权平均数的求解与b比a大15列方程组,然后解方程组即可求出a、b的值;
(4)先根据频率求出成绩合格的两组的人数,然后分别取两组的最低分与最高分,根据平均数的求法求出a可能的最小值与最大值,从而得解.
解答:解:(1)成绩合格的频率为:0.2+0.3=0.5,
所以,样本容量为:40÷0.5=80;…(3分)

(2)成绩位于79.5~89.5的频率为1-(0.1+0.2+0.3+0.15)=0.25.…(1分)
成绩为优良的频率为:0.25+0.15=0.4,
所以,全校所有参赛学生中成绩等第为优良的学生人数为600×0.4=240(人);…(2分)

(3)本次随机抽样分析成绩不合格的人数为80×0.1=8(人),
成绩优良的人数为80×0.4=32(人),…(1分)
依据题意,可得方程组
57×8+40a+32b
80
=76.5
-a+b=15
,…(1分)
解得
a=72
b=87
;…(1分)
故所求a、b的值分别为72,87;

(4)成绩位于59.5~69.5的人数为:80×0.2=16,
成绩位于69.5~79.5的人数为:80×0.3=24,
∵得分都是整数,
∴a≥
16×60+24×70
16+24
=
2640
40
=66,
a≤
16×69+24×79
16+24
=
3000
40
=75,
所以,a的取值范围是66≤a≤75,
即[66,75].
故答案为D.…(3分)
点评:本题考查了对频数分布直方图与频数分布表的信息获取能力,根据两个图表求出成绩合格的频率与频数是解题的关键,(4)中考虑利用成绩的最低值与最高值分别求出a可能的最小值与最大值进行求解是本问的难点,不容易考虑得到.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•嘉定区二模)如果a<b,c<0,那么下列不等式成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•嘉定区二模)下列命题中,假命题是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•嘉定区二模)已知一个二次函数的图象在y轴左侧部分是上升的,在y轴右侧部分是下降的,又经过点A(1,1).那么这个二次函数的解析式可以是
y=-x2+2(答案不唯一)
y=-x2+2(答案不唯一)
(写出符合要求的一个解析式即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•嘉定区二模)半径为2的圆中,60°的圆心角所对的弦长为
2
2

查看答案和解析>>

同步练习册答案