Èçͼ£¬Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬µãAµÄ×ø±êΪ£¨-2£¬2£©£¬µãBµÄ×ø±êΪ£¨6£¬6£©£¬Å×ÎïÏß¾­¹ýA¡¢O¡¢BÈýµã£¬Á¬½ÓOA¡¢OB¡¢AB£¬Ï߶ÎAB½»yÖáÓÚµãE£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©µãFΪÏ߶ÎOBÉϵÄÒ»¸ö¶¯µã£¨²»ÓëµãO¡¢BÖغϣ©£¬Ö±ÏßEFÓëÅ×ÎïÏß½»ÓÚM¡¢NÁ½µã£¨µãNÔÚyÖáÓҲࣩ£¬Á¬½ÓON¡¢BN£¬µ±µãFÔÚÏ߶ÎOBÉÏÔ˶¯Ê±£¬Çó¡÷BON Ãæ»ýµÄ×î´óÖµ£¬²¢Çó³ö´ËʱµãNµÄ×ø±ê£»
£¨3£©µ±¡÷BONÃæ»ý×î´óʱ£¬Á¬½ÓAN£¬ÈôµãP×ø±êƽÃæÄÚ£¬²¢Ê¹µÃ¡÷BOP¡×¡÷OAN£¨µãB¡¢O¡¢P·Ö±ðÓëµãO¡¢A¡¢N¶ÔÓ¦£©£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÉèÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬½«A£¨-2£¬2£©£¬B£¨6£¬6£©£¬O£¨0£¬0£©Èýµã×ø±ê´úÈ룬Áз½³Ì×éÇóa¡¢b¡¢cµÄÖµ¼´¿É£»
£¨2£©ÒÀÌâÒ⣬µÃÖ±ÏßOBµÄ½âÎöʽΪy=x£¬Éè¹ýNµãÇÒÓëÖ±ÏßOBƽÐеÄÖ±Ïß½âÎöʽΪy=x+m£¬ÓëÅ×ÎïÏß½âÎöʽÁªÁ¢£¬µÃ³ö¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬µ±¡÷=0ʱ£¬¡÷BONÃæ»ý×î´ó£¬ÓÉ´Ë¿ÉÇómµÄÖµ¼°NµãµÄ×ø±ê£»
£¨3£©¸ù¾ÝÈý½ÇÐÎÏàËƵÄÐÔÖʵõ½BO£ºOA=OP£ºAN=BP£ºON£¬È»ºó¸ù¾Ý¹´¹É¶¨Àí·Ö±ð¼ÆËã³öBO=6
2
£¬OA=2
2
£¬AN=
5
17
4
£¬ON=
3
17
4
£¬ÕâÑù¿ÉÇó³öOP=
5
17
4
£¬BP=
9
17
4
£¬ÉèPµã×ø±êΪ£¨x£¬y£©£¬ÔÙÀûÓù´¹É¶¨ÀíµÃµ½¹ØÓÚx£¬yµÄ·½³Ì×飬½â·½³Ì×é¼´¿É£®
½â´ð£º½â£º£¨1£©ÉèÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬
½«A£¨-2£¬2£©£¬B£¨6£¬6£©£¬O£¨0£¬0£©Èýµã×ø±ê´úÈ룬µÃ
4a-2b+c=2
36a+6b+c=6
c=0
£¬
½âµÃ
a=
1
4
b=-
1
2
c=0
£¬
¡ày=
1
4
x2-
1
2
x£¬

£¨2£©ÒÀÌâÒ⣬µÃÖ±ÏßOBµÄ½âÎöʽΪy=x£¬Éè¹ýNµãÇÒÓëÖ±ÏßOBƽÐеÄÖ±Ïß½âÎöʽΪy=x+m£¬
ÁªÁ¢
y=
1
4
x2 -
1
2
x
y=x+m
£¬µÃx2-6x-4m=0£¬
µ±¡÷=36+16m=0ʱ£¬¹ýNµãÓëOBƽÐеÄÖ±ÏßÓëÅ×ÎïÏßÓÐΨһµÄ¹«¹²µã£¬ÔòµãNµ½OBµÄ¾àÀë×î´ó£¬ËùÒÔ¡÷BONÃæ»ý×î´ó£¬
½âµÃm=-
9
4
£¬x=3£¬y=
3
4
£¬¼´N£¨3£¬
3
4
£©£»
´Ëʱ¡÷BONÃæ»ý=
1
2
¡Á6¡Á6-
1
2
£¨
3
4
+6£©¡Á3-
1
2
¡Á
3
4
¡Á3=
27
4
£»

£¨3£©¹ýµãA×÷AS¡ÍGQÓÚS£¬
¡ßA£¨-2£¬2£©£¬B£¨6£¬6£©£¬N£¨3£¬
3
4
£©£¬
¡ß¡ÏAOE=¡ÏOAS=¡ÏBOH=45¡ã£¬
OG=3£¬NG=
3
4
£¬NS=
5
4
£¬AS=5£¬
ÔÚRt¡÷SANºÍRt¡÷NOGÖУ¬
¡àtan¡ÏSAN=tan¡ÏNOG=
1
4
£¬
¡à¡ÏSAN=¡ÏNOG£¬
¡à¡ÏOAS-¡ÏSAN=¡ÏBOG-¡ÏNOG£¬
¡à¡ÏOAN=¡ÏBON£¬
¡àONµÄÑÓ³¤ÏßÉÏ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷BOP¡×¡÷OAN£¬
¡ßA£¨-2£¬2£©£¬N£¨3£¬
3
4
£©£¬
¡ß¡÷BOPÓë¡÷OANÏàËÆ£¨µãB¡¢O¡¢P·Ö±ðÓëµãO¡¢A¡¢N¶ÔÓ¦£©£¬¼´¡÷BOP¡×¡÷OAN£¬
¡àBO£ºOA=OP£ºAN=BP£ºON
ÓÖ¡ßA£¨-2£¬2£©£¬N£¨3£¬
3
4
£©£¬B£¨6£¬6£©£¬
¡àBO=6
2
£¬OA=2
2
£¬AN=
5
17
4
£¬ON=
3
17
4
£¬
¡àOP=
15
17
4
£¬BP=
9
17
4
£¬
ÉèPµã×ø±êΪ£¨4x£¬x£©£¬
¡à16x2+x2=£¨
15
17
4
£©2£¬
½âµÃx=
15
4
£¬4x=15£¬
¡ßP¡¢P¡ä¹ØÓÚÖ±Ïßy=xÖá¶Ô³Æ£¬
¡àPµã×ø±êΪ£¨15£¬
15
4
£©»ò£¨
15
4
£¬15£©£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÔËÓ㮸ù¾ÝÒÑÖªÌõ¼þÇóÖ±Ïß¡¢Å×ÎïÏß½âÎöʽ£¬ÔÙ¸ù¾ÝͼÐÎÌص㣬½«ÎÊÌâת»¯ÎªÁз½³Ì×飬ÀûÓôúÊý·½·¨½âÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Æ½ÃæÖ±½Ç×ø±êϵÖУ¬OΪֱ½ÇÈý½ÇÐÎABCµÄÖ±½Ç¶¥µã£¬¡ÏB=30¡ã£¬Èñ½Ç¶¥µãAÔÚË«ÇúÏßy=
1x
ÉÏÔ˶¯£¬ÔòBµãÔÚº¯Êý½âÎöʽ
 
ÉÏÔ˶¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Æ½ÃæÖ±½Ç×ø±êϵÖУ¬¡ÑPÓëxÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬µãPµÄ×ø±êΪ£¨3£¬-1£©£¬AB¾«Ó¢¼Ò½ÌÍø=2
3
£®
£¨1£©Çó¡ÑPµÄ°ë¾¶£®
£¨2£©½«¡ÑPÏòÏÂƽÒÆ£¬Çó¡ÑPÓëxÖáÏàÇÐʱƽÒƵľàÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Æ½ÃæÖ±½Ç×ø±êϵÖУ¬OBÔÚxÖáÉÏ£¬¡ÏABO=90¡ã£¬µãAµÄ×ø±êΪ£¨1£¬2£©£®½«¡÷AOBÈƵãAÄæʱÕëÐýת90¡ã£¬ÔòµãOµÄ¶ÔÓ¦µãCµÄ×ø±êΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£ºÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¡÷ABCµÄÈý¸ö¶¥µãµÄ×ø±êΪA£¨a£¬0£©£¬B£¨b£¬0£©£¬C£¨0£¬c£©£¬ÇÒa£¬b£¬cÂú×ã
a+2
+|b-2|+(c-b)2=0
£®µãDΪÏ߶ÎOAÉÏÒ»¶¯µã£¬Á¬½ÓCD£®
£¨1£©Åжϡ÷ABCµÄÐÎ×´²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èçͼ£¬¹ýµãD×÷CDµÄ´¹Ïߣ¬¹ýµãB×÷BCµÄ´¹Ïߣ¬Á½´¹Ïß½»ÓÚµãG£¬×÷GH¡ÍABÓÚH£¬ÇóÖ¤£º
S¡÷CAD
S¡÷DGH
=
AD
GH
£»
£¨3£©Èçͼ£¬ÈôµãDµ½CA¡¢COµÄ¾àÀëÏàµÈ£¬EΪAOµÄÖе㣬ÇÒEF¡ÎCD½»yÖáÓÚµãF£¬½»CAÓÚM£®Çó
FC+2AE
3AM
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Aµã×ø±êΪ£¨8£¬0£©£¬Bµã×ø±êΪ£¨0£¬6£©CÊÇÏ߶ÎABµÄÖе㣮ÇëÎÊÔÚyÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃÒÔP¡¢B¡¢CΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AOBÏàËÆ£¿Èô´æÔÚ£¬Çó³öPµã×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸