精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知点A(,0),B(2,0),若点C在一次函数的图象上,且△ABC为直角三角形,则满足条件的点C有 ( )
A.1个B.2个C.3个D.4个
D.

试题分析:由题意知,直线y=-x+2与x轴的交点为(4,0),与y轴的交点为(0,2),如图:

过点A作垂线与直线的交点W(-4,4),
过点B作垂线与直线的交点S(2,1),
过AB中点E(-1,0),作垂线与直线的交点为F(-1,2.5),
则EF=2.5<3,
所以以3为半径,以点E为圆心的圆与直线必有两个交点
∴共有四个点能与点A,点B组成直角三角形.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.
人均住房面积(平方米)
单价(万元/平方米)
不超过30(平方米)
0.3
超过30平方米不超过m(平方米)部分(45≤m≤60)
0.5
超过m平方米部分
0.7
 
根据这个购房方案:
(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;
(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为. 对于一个函数,如果它的自变量与函数值满足:当m≤≤n时,有m≤≤n,我们就称此函数是闭区间上的“闭函数”.
(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间上的“闭函数”,求此函数的表达式;
(3)若二次函数是闭区间上的“闭函数”,直接写出实数 的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A的坐标为(6,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为( )
A.2B.3
C.4D.PB的长度随点B的运动而变化

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第       象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿点A→B方向运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿B→C→D方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是(     )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=kx+b与反比例函数y=的图象如图所示,下列结论正确的是
A.它们的函数值y随着x的增大而增大
B.它们的函数值y随着x的增大而减小
C.k<0
D.它们的自变量x的取值为全体实数

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一天,某渔船离开港口前往黄岩岛海域捕鱼,8小时后返航,此时一艘渔政船从该港口出发前往黄岩岛巡查(假设渔政船与渔船沿同一航线航行)。下图是渔政船及渔船到港口的距离S和渔船离开港口的时间t之间的函数图象.
(1)写出渔船离港口的距离S和它离开港口的时间t的函数关系式;
(2)在渔船返航途中,什么时间范围内两船间距离不超过30海里?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知直线的方程式为ax+by+c=0,且a<0<c<b,则函数的图象为(  )
         
A                 B.                C.              D.

查看答案和解析>>

同步练习册答案