【题目】把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为( ).
A.B.
C.D.
【答案】A
【解析】
如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.
解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,
∴∠AEB=∠AFD=90°,
∵AD∥CB,AB∥CD,
∴四边形ABCD是平行四边形,
∵纸条宽度都为1,
∴AE=AF=1,
在△ABE和△ADF中
,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴四边形ABCD是菱形.
∴BC=AB,
∵=sinα,
∴BC=AB=,
∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.
(1)求证:;
(2)若,求.
(3)如图2,在(2)的条件下,连接CF,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市经销一种销售成本为每件60元的商品,据市场调查发现,如果按每件70元销售,一周能售出500件,若销售单价每涨1元,每周销售就减少10件,设销售价为每件x元(x≥70),一周的销售量为y件.
(1)当销售价为每件80元时,一周能销售多少件?答:_____________件.
(2)写出y与x的函数关系式,并写出x的取值范围.
(3)设一周的销售利润为w,写出w与x的函数关系式.
(4)在超市对该种商品投入不超过18000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,建立平面直角坐标系后, 的顶点均在格点上,点 的坐标为.
(1)画出关于 轴对称的;写出顶点的坐标( , ),( , ).
(2)画出将绕原点 按顺时针旋转 所得的;写出顶点的坐标( , ),( , ),( , ).
(3)与成中心对称图形吗?若成中心对称图形,写出对称中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).
(1)作出△COD;
(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:
第一步:在x轴上找一格点E,连接DE,使OE=OD;
第二步:在DE上找一点F,连接OF,使OF平分∠AOD;
第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.
请你按步骤完成作图,并直接写出E,F,I三点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图(1),射线AM∥射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC.
(1)求证:△ADE∽△BEC;
(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;
(3)当 AD+DE=AB=时.设AE=m,请探究:△BEC的周长是否与m值有关?若有关,请用含有m的代数式表示△BEC的周长;若无关,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一列有理数﹣1,2,﹣3,4,﹣5,6,…,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数_____,2008应排在A、B、C、D、E中_____的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形ABC中,∠C=90°,点D是△ABC的重心,以AD为直角边作等腰Rt△ADE,若△ABC的周长为6,则△ADE的周长为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com