精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=kx2+2kx-3k,交x轴于A、B两点(A在B的左边),交y轴于C点,且y有最大值4.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使△PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.
分析:(1)根据二次函数的最值得到
4k•(-3k)-(2k)2
4k
=4
且k<0,求出k即可;
(2)①当∠C=90°时,作PC⊥BC交抛物线于P点,并做PD⊥y轴于D点,设P(x,-x2-2x+3),根据△OBC∽△DCP,得到
CO
BO
=
DP
CD
,代入求出即可;②当∠B=90°时,作PB⊥BC交抛物线于P点,并作PE⊥x轴于点E,设P(x,-x2-2x+3),根据△OBC∽△EPB,得到
CO
BO
=
EB
EP
,代入求出即可;③当∠P=90°时,点P应在以BC为直径的圆周上,根据图象得出结论.
解答:解:(1)∵y有最大值4,
∴y=kx2+2kx-3k=k(x+1)2-4k,
∴-4k=4,精英家教网
解得k=-1,
∴y=-x2-2x+3,
答:抛物线的解析式是y=-x2-2x+3.

(2)根据直角的可能性分三种情况:
①当∠C=90°时,作PC⊥BC交抛物线于P点,并做PD⊥y轴于D点,
设P(x,-x2-2x+3),
∵△OBC∽△DCP,
CO
BO
=
DP
CD

3
1
=
-x
3-(-x2-2x+3)

∴x1=0(舍去),x2=-
7
3

P(-
7
3
20
9
)

②当∠B=90°时,作PB⊥BC交抛物线于P点,并作PE⊥x轴于点E,
设P(x,-x2-2x+3),
∵△OBC∽△EPB,
CO
BO
=
EB
EP

3
1
=
1-x
-(-x2-2x+3)

∴x1=1(舍去),x2=-
10
3

P(-
10
3
,-
13
9
)

③当∠P=90°时,点P应在以BC为直径的圆周上,
如图,与抛物线无交点,故不存在,
综上所述,这样的点P有两个:P1(-
7
3
20
9
)
,P2(-
10
3
,-
13
9
),
答:在抛物线上存在点P,使△PBC是直角三角形,P点坐标是(-
7
3
20
9
)或(-
10
3
,-
13
9
).
点评:本题主要考查对二次函数的最值,相似三角形的判定和性质,解一元二次方程,用待定系数法求二次函数的解析式,直角三角形的性质等知识点的理解和掌握,能根据性质求出符合条件的所有情况是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=kx2(k>0)与直线y=ax+b(a≠0)有两个公共点,它们的横坐标分别为x1、x2,又有直线y=ax+b与x轴的交点坐标为(x3,0),则x1、x2、x3满足的关系式是(  )
A、x1+x2=x3
B、
1
x1
+
1
x2
=
1
x3
C、x3=
x1+x2
x1x2
D、x1x2+x2x3=x1x3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1.
(1)求抛物线的顶点坐标;
(2)求k的取值范围;
(3)过动点P(0,n)作直线l⊥y轴,点O为坐标原点.
①当直线l与抛物线只有一个公共点时,求n关于k的函数关系式;
②当直线l与抛物线相交于A、B两点时,是否存在实数n,使得不论k在其取值范围内取任意值时,△AOB的面积为定值?如果存在,求出n的值;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=kx2+(k-2)x-2(其中k>0).
(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);
(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;
(3)将该抛物线先向右平移
1
2
个单位长度,再向上平移
1
k
个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).

查看答案和解析>>

科目:初中数学 来源:第26章《二次函数》中考题集(37):26.3 实际问题与二次函数(解析版) 题型:解答题

已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1.
(1)求抛物线的顶点坐标;
(2)求k的取值范围;
(3)过动点P(0,n)作直线l⊥y轴,点O为坐标原点.
①当直线l与抛物线只有一个公共点时,求n关于k的函数关系式;
②当直线l与抛物线相交于A、B两点时,是否存在实数n,使得不论k在其取值范围内取任意值时,△AOB的面积为定值?如果存在,求出n的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案