精英家教网 > 初中数学 > 题目详情
半径为5的⊙O的圆心在原点O,则点P(-3,4)与⊙O的位置关系是(  )
A、点P在⊙O外B、点P在⊙O上C、点P在⊙O内D、无法判断
分析:本题应先由勾股定理求得点P到圆心O的距离,再根据点P与圆心的距离与半径的大小关系,来判断出点P与⊙O的位置关系.
当d>r时,点在圆外;
当d=r时,点在圆上;
当d<r时,点在圆内.
解答:解:∵点P的坐标为(-3,4),
∴由勾股定理得,点P到圆心O的距离=
32+42
=5,
∴点P在⊙O上,故选B.
点评:本题考查了点与圆的位置关系:①点P在⊙O上;②点P在⊙O内;③点P在⊙O外.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/s的速度由点A沿AC方向在AC上移动,设移动时间为t(单位:s).
(1)当t为何值时,⊙P与AB相切;
(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E,证明:精英家教网t=
165
s
时,四边形PDBE为平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移
1或5
个单位时,它与x轴相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为
 

②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为
 
时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为
 
时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标 轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,在抛物线上找一点Q,使△BDQ的面积与△BDP的面积相等,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为________;
②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为________时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为________时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.

查看答案和解析>>

同步练习册答案