精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC=10,BC=12,以A为圆心,分别以下列长为半径作圆,请你判定⊙A与直线BC的位置关系.(1)6;(2)8;(3)12.
【答案】分析:此题重点是求得圆心到直线的距离.根据等腰三角形的三线合一以及勾股定理进行计算,然后进一步比较圆心到直线的距离和圆的半径,从而确定⊙A与直线BC的位置关系.
若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
解答:解:作AD⊥BC于点D.
∵AB=AC=10,
又∵AD⊥BC,BC=12,
∴BD=6,
在Rt△ABD中,根据勾股定理:AD==
AD=8为圆心到直线的距离d,
(1)当r=6时,即d>r,则直线和圆相离;
(2)当r=8时,即d=r,则直线和圆相切;
(3)当r=12时,即d<r,则直线和圆相交.
点评:此题的重点是正确求得圆心到直线的距离,然后根据数量关系判断直线和圆的位置关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案