A. | $\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{2014}{2015}$ |
分析 先利用坐标轴上点的坐标特征求出直线与x轴和y轴的坐标,则利用三角形面积公式得到Sn=$\frac{1}{n(n+1)}$,再分别计算出S1,S2,S3,S2015,然后利用$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$求它们的和.
解答 解:当x=0时,y=$\frac{\sqrt{2}}{n+1}$,则直线与y轴的交点坐标为(0,$\frac{\sqrt{2}}{n+1}$),
当y=0时,x=$\frac{\sqrt{2}}{n}$,则直线与x轴的交点坐标为($\frac{\sqrt{2}}{n}$,0),
所以Sn=$\frac{1}{2}$•$\frac{\sqrt{2}}{n}$•$\frac{\sqrt{2}}{n+1}$=$\frac{1}{n(n+1)}$,
当n=1时,S1=$\frac{1}{1×2}$,
当n=2时,S2=$\frac{1}{2×3}$,
当n=3时,S3=$\frac{1}{3×4}$,
…
当n=2015时,S2015=$\frac{1}{2015×2016}$,
所以S1+S2+S3+…+S2015=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2015×2016}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$=1-$\frac{1}{2016}$=$\frac{2015}{2016}$.
故选C.
点评 本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,解决此类问题时求出直线与坐标轴的交点坐标.熟练运用$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$是解决此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 60° | B. | 120° | C. | 45° | D. | 60°或120° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com